亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

解決tensorflow由于未初始化變量而導(dǎo)致的錯(cuò)誤問題

 更新時(shí)間:2020年01月06日 09:16:08   作者:skj1995  
今天小編就為大家分享一篇解決tensorflow由于未初始化變量而導(dǎo)致的錯(cuò)誤問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來(lái)看看吧

我寫的這個(gè)程序

import tensorflow as tf

sess=tf.InteractiveSession()
x=tf.Variable([1.0,2.0])
a=tf.constant([3.0,3.0])
x.initializer.run()
sun=tf.div(x,a)
print(sub.eval())
sess.close()

出現(xiàn)了如下所示的錯(cuò)誤:

原因是倒數(shù)第二行的sub沒有初始化,倒數(shù)第三行應(yīng)該是初始化sub的,但是打錯(cuò)了,成了sun,這樣后面出現(xiàn)的sub就相當(dāng)于沒有初始化,所以出現(xiàn)了變量沒有初始化的錯(cuò)誤。

FailedPreconditionError          Traceback (most recent call last)
C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
  1360   try:
-> 1361    return fn(*args)
  1362   except errors.OpError as e:

C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
  1339      return tf_session.TF_Run(session, options, feed_dict, fetch_list,
-> 1340                  target_list, status, run_metadata)
  1341 

C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
  515       compat.as_text(c_api.TF_Message(self.status.status)),
--> 516       c_api.TF_GetCode(self.status.status))
  517   # Delete the underlying status object from memory otherwise it stays alive

FailedPreconditionError: Attempting to use uninitialized value Variable_1
	 [[Node: Variable_1/read = Identity[T=DT_FLOAT, _class=["loc:@Variable_1"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](Variable_1)]]

During handling of the above exception, another exception occurred:

FailedPreconditionError          Traceback (most recent call last)
<ipython-input-3-cac34f40642f> in <module>()
   5 x.initializer.run()
   6 sun=tf.div(x,a)
----> 7 print(sub.eval())
   8 sess.close()

C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in eval(self, feed_dict, session)
  654 
  655   """
--> 656   return _eval_using_default_session(self, feed_dict, self.graph, session)
  657 
  658 

C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in _eval_using_default_session(tensors, feed_dict, graph, session)
  4899            "the tensor's graph is different from the session's "
  4900            "graph.")
-> 4901  return session.run(tensors, feed_dict)
  4902 
  4903 

C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
  903   try:
  904    result = self._run(None, fetches, feed_dict, options_ptr,
--> 905             run_metadata_ptr)
  906    if run_metadata:
  907     proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
  1135   if final_fetches or final_targets or (handle and feed_dict_tensor):
  1136    results = self._do_run(handle, final_targets, final_fetches,
-> 1137               feed_dict_tensor, options, run_metadata)
  1138   else:
  1139    results = []

C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
  1353   if handle is None:
  1354    return self._do_call(_run_fn, self._session, feeds, fetches, targets,
-> 1355              options, run_metadata)
  1356   else:
  1357    return self._do_call(_prun_fn, self._session, handle, feeds, fetches)

C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
  1372     except KeyError:
  1373      pass
-> 1374    raise type(e)(node_def, op, message)
  1375 
  1376  def _extend_graph(self):

FailedPreconditionError: Attempting to use uninitialized value Variable_1
	 [[Node: Variable_1/read = Identity[T=DT_FLOAT, _class=["loc:@Variable_1"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](Variable_1)]]

Caused by op 'Variable_1/read', defined at:
 File "C:\Users\SKJ\Anaconda3\lib\runpy.py", line 184, in _run_module_as_main
  "__main__", mod_spec)
 File "C:\Users\SKJ\Anaconda3\lib\runpy.py", line 85, in _run_code
  exec(code, run_globals)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
  app.launch_new_instance()
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\traitlets\config\application.py", line 653, in launch_instance
  app.start()
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 474, in start
  ioloop.IOLoop.instance().start()
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\zmq\eventloop\ioloop.py", line 162, in start
  super(ZMQIOLoop, self).start()
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tornado\ioloop.py", line 887, in start
  handler_func(fd_obj, events)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
  return fn(*args, **kwargs)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
  self._handle_recv()
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
  self._run_callback(callback, msg)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
  callback(*args, **kwargs)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper
  return fn(*args, **kwargs)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 276, in dispatcher
  return self.dispatch_shell(stream, msg)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 228, in dispatch_shell
  handler(stream, idents, msg)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 390, in execute_request
  user_expressions, allow_stdin)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
  res = shell.run_cell(code, store_history=store_history, silent=silent)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 501, in run_cell
  return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell
  interactivity=interactivity, compiler=compiler, result=result)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2821, in run_ast_nodes
  if self.run_code(code, result):
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code
  exec(code_obj, self.user_global_ns, self.user_ns)
 File "<ipython-input-2-69a776ba1e33>", line 3, in <module>
  x=tf.Variable([1.0,2.0])
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\ops\variables.py", line 233, in __init__
  constraint=constraint)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\ops\variables.py", line 381, in _init_from_args
  self._snapshot = array_ops.identity(self._variable, name="read")
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 131, in identity
  return gen_array_ops.identity(input, name=name)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 2656, in identity
  "Identity", input=input, name=name)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
  op_def=op_def)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3271, in create_op
  op_def=op_def)
 File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1650, in __init__
  self._traceback = self._graph._extract_stack() # pylint: disable=protected-access

FailedPreconditionError (see above for traceback): Attempting to use uninitialized value Variable_1
	 [[Node: Variable_1/read = Identity[T=DT_FLOAT, _class=["loc:@Variable_1"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](Variable_1)]]

以上這篇解決tensorflow由于未初始化變量而導(dǎo)致的錯(cuò)誤問題就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python實(shí)現(xiàn)將內(nèi)容轉(zhuǎn)為base64編碼與解碼

    Python實(shí)現(xiàn)將內(nèi)容轉(zhuǎn)為base64編碼與解碼

    這篇文章主要為大家詳細(xì)介紹了Python實(shí)現(xiàn)將內(nèi)容轉(zhuǎn)為base64編碼與解碼的示例代碼,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以了解一下
    2023-02-02
  • 關(guān)于python中readlines函數(shù)的參數(shù)hint的相關(guān)知識(shí)總結(jié)

    關(guān)于python中readlines函數(shù)的參數(shù)hint的相關(guān)知識(shí)總結(jié)

    今天給大家?guī)?lái)的是關(guān)于Python函數(shù)的相關(guān)知識(shí),文章圍繞著python中readlines函數(shù)的參數(shù)hint展開,文中有非常詳細(xì)的介紹及代碼示例,需要的朋友可以參考下
    2021-06-06
  • Python命名空間與作用域深入全面詳解

    Python命名空間與作用域深入全面詳解

    命名空間是從名稱到對(duì)象的映射,大部分的命名空間都是通過 Python 字典來(lái)實(shí)現(xiàn)的,作用域就是一個(gè)可以直接訪問命名空間的正文區(qū)域。程序的變量并不是在哪個(gè)位置都可以訪問的,訪問權(quán)限決定于這個(gè)變量是在哪里賦值的
    2022-11-11
  • Python中的閉包實(shí)例詳解

    Python中的閉包實(shí)例詳解

    這篇文章主要介紹了Python中的閉包,針對(duì)閉包的定義、用法及注意事項(xiàng)進(jìn)行了實(shí)例講解,有助于讀者深入理解閉包的概念及用法,需要的朋友可以參考下
    2014-08-08
  • python實(shí)現(xiàn)二維數(shù)組的對(duì)角線遍歷

    python實(shí)現(xiàn)二維數(shù)組的對(duì)角線遍歷

    這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)二維數(shù)組的對(duì)角線遍歷,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2019-03-03
  • Python找出列表中出現(xiàn)次數(shù)最多的元素三種方式

    Python找出列表中出現(xiàn)次數(shù)最多的元素三種方式

    本文通過三種方式給大家介紹Python找出列表中出現(xiàn)次數(shù)最多的元素,每種方式通過實(shí)例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友參考下
    2020-02-02
  • Python?常見的配置文件寫法梳理匯總

    Python?常見的配置文件寫法梳理匯總

    這篇文章主要介紹了Python?常見的配置文件寫法梳理匯總,文章圍繞主題展開主題相關(guān)梳理總結(jié),需要的朋友可以參考一下
    2022-07-07
  • 一步步教你用Python畫五彩氣球

    一步步教你用Python畫五彩氣球

    這篇文章主要給大家介紹了關(guān)于如何用Python畫五彩氣球的相關(guān)資料,主要是用turtle庫(kù)自帶的畫筆turtle.Turtle()來(lái)繪制氣球,文中給出了詳細(xì)的實(shí)例代碼,需要的朋友可以參考下
    2023-06-06
  • python 裝飾器帶參數(shù)和不帶參數(shù)步驟詳解

    python 裝飾器帶參數(shù)和不帶參數(shù)步驟詳解

    裝飾器是Python語(yǔ)言中一種特殊的語(yǔ)法,用于在不修改原函數(shù)代碼的情況下,為函數(shù)添加額外的功能或修改函數(shù)的行為,這篇文章主要介紹了python裝飾器帶參數(shù)和不帶參數(shù)的相關(guān)知識(shí),需要的朋友可以參考下
    2024-05-05
  • 使用Python刪除PPT中所有超鏈接的操作步驟

    使用Python刪除PPT中所有超鏈接的操作步驟

    在某些PPT使用場(chǎng)景中,比如需要打印幻燈片或者超鏈接已失效時(shí),演示文稿中的超鏈接可能會(huì)成為一種干擾,這時(shí)我們需要移除PowerPoint演示文稿中的超鏈接,本文將介紹如何使用Python刪除PowerPoint演示文稿中的所有超鏈接,需要的朋友可以參考下
    2024-08-08

最新評(píng)論