解決tensorflow由于未初始化變量而導(dǎo)致的錯(cuò)誤問題
我寫的這個(gè)程序
import tensorflow as tf sess=tf.InteractiveSession() x=tf.Variable([1.0,2.0]) a=tf.constant([3.0,3.0]) x.initializer.run() sun=tf.div(x,a) print(sub.eval()) sess.close()
出現(xiàn)了如下所示的錯(cuò)誤:
原因是倒數(shù)第二行的sub沒有初始化,倒數(shù)第三行應(yīng)該是初始化sub的,但是打錯(cuò)了,成了sun,這樣后面出現(xiàn)的sub就相當(dāng)于沒有初始化,所以出現(xiàn)了變量沒有初始化的錯(cuò)誤。
FailedPreconditionError Traceback (most recent call last) C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args) 1360 try: -> 1361 return fn(*args) 1362 except errors.OpError as e: C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata) 1339 return tf_session.TF_Run(session, options, feed_dict, fetch_list, -> 1340 target_list, status, run_metadata) 1341 C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg) 515 compat.as_text(c_api.TF_Message(self.status.status)), --> 516 c_api.TF_GetCode(self.status.status)) 517 # Delete the underlying status object from memory otherwise it stays alive FailedPreconditionError: Attempting to use uninitialized value Variable_1 [[Node: Variable_1/read = Identity[T=DT_FLOAT, _class=["loc:@Variable_1"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](Variable_1)]] During handling of the above exception, another exception occurred: FailedPreconditionError Traceback (most recent call last) <ipython-input-3-cac34f40642f> in <module>() 5 x.initializer.run() 6 sun=tf.div(x,a) ----> 7 print(sub.eval()) 8 sess.close() C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in eval(self, feed_dict, session) 654 655 """ --> 656 return _eval_using_default_session(self, feed_dict, self.graph, session) 657 658 C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in _eval_using_default_session(tensors, feed_dict, graph, session) 4899 "the tensor's graph is different from the session's " 4900 "graph.") -> 4901 return session.run(tensors, feed_dict) 4902 4903 C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata) 903 try: 904 result = self._run(None, fetches, feed_dict, options_ptr, --> 905 run_metadata_ptr) 906 if run_metadata: 907 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr) C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata) 1135 if final_fetches or final_targets or (handle and feed_dict_tensor): 1136 results = self._do_run(handle, final_targets, final_fetches, -> 1137 feed_dict_tensor, options, run_metadata) 1138 else: 1139 results = [] C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata) 1353 if handle is None: 1354 return self._do_call(_run_fn, self._session, feeds, fetches, targets, -> 1355 options, run_metadata) 1356 else: 1357 return self._do_call(_prun_fn, self._session, handle, feeds, fetches) C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args) 1372 except KeyError: 1373 pass -> 1374 raise type(e)(node_def, op, message) 1375 1376 def _extend_graph(self): FailedPreconditionError: Attempting to use uninitialized value Variable_1 [[Node: Variable_1/read = Identity[T=DT_FLOAT, _class=["loc:@Variable_1"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](Variable_1)]] Caused by op 'Variable_1/read', defined at: File "C:\Users\SKJ\Anaconda3\lib\runpy.py", line 184, in _run_module_as_main "__main__", mod_spec) File "C:\Users\SKJ\Anaconda3\lib\runpy.py", line 85, in _run_code exec(code, run_globals) File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\__main__.py", line 3, in <module> app.launch_new_instance() File "C:\Users\SKJ\Anaconda3\lib\site-packages\traitlets\config\application.py", line 653, in launch_instance app.start() File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 474, in start ioloop.IOLoop.instance().start() File "C:\Users\SKJ\Anaconda3\lib\site-packages\zmq\eventloop\ioloop.py", line 162, in start super(ZMQIOLoop, self).start() File "C:\Users\SKJ\Anaconda3\lib\site-packages\tornado\ioloop.py", line 887, in start handler_func(fd_obj, events) File "C:\Users\SKJ\Anaconda3\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper return fn(*args, **kwargs) File "C:\Users\SKJ\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events self._handle_recv() File "C:\Users\SKJ\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv self._run_callback(callback, msg) File "C:\Users\SKJ\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback callback(*args, **kwargs) File "C:\Users\SKJ\Anaconda3\lib\site-packages\tornado\stack_context.py", line 275, in null_wrapper return fn(*args, **kwargs) File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 276, in dispatcher return self.dispatch_shell(stream, msg) File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 228, in dispatch_shell handler(stream, idents, msg) File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 390, in execute_request user_expressions, allow_stdin) File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "C:\Users\SKJ\Anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 501, in run_cell return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs) File "C:\Users\SKJ\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2717, in run_cell interactivity=interactivity, compiler=compiler, result=result) File "C:\Users\SKJ\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2821, in run_ast_nodes if self.run_code(code, result): File "C:\Users\SKJ\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-2-69a776ba1e33>", line 3, in <module> x=tf.Variable([1.0,2.0]) File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\ops\variables.py", line 233, in __init__ constraint=constraint) File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\ops\variables.py", line 381, in _init_from_args self._snapshot = array_ops.identity(self._variable, name="read") File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 131, in identity return gen_array_ops.identity(input, name=name) File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 2656, in identity "Identity", input=input, name=name) File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper op_def=op_def) File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3271, in create_op op_def=op_def) File "C:\Users\SKJ\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1650, in __init__ self._traceback = self._graph._extract_stack() # pylint: disable=protected-access FailedPreconditionError (see above for traceback): Attempting to use uninitialized value Variable_1 [[Node: Variable_1/read = Identity[T=DT_FLOAT, _class=["loc:@Variable_1"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](Variable_1)]]
以上這篇解決tensorflow由于未初始化變量而導(dǎo)致的錯(cuò)誤問題就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python實(shí)現(xiàn)將內(nèi)容轉(zhuǎn)為base64編碼與解碼
這篇文章主要為大家詳細(xì)介紹了Python實(shí)現(xiàn)將內(nèi)容轉(zhuǎn)為base64編碼與解碼的示例代碼,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以了解一下2023-02-02關(guān)于python中readlines函數(shù)的參數(shù)hint的相關(guān)知識(shí)總結(jié)
今天給大家?guī)?lái)的是關(guān)于Python函數(shù)的相關(guān)知識(shí),文章圍繞著python中readlines函數(shù)的參數(shù)hint展開,文中有非常詳細(xì)的介紹及代碼示例,需要的朋友可以參考下2021-06-06python實(shí)現(xiàn)二維數(shù)組的對(duì)角線遍歷
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)二維數(shù)組的對(duì)角線遍歷,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-03-03Python找出列表中出現(xiàn)次數(shù)最多的元素三種方式
本文通過三種方式給大家介紹Python找出列表中出現(xiàn)次數(shù)最多的元素,每種方式通過實(shí)例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友參考下2020-02-02python 裝飾器帶參數(shù)和不帶參數(shù)步驟詳解
裝飾器是Python語(yǔ)言中一種特殊的語(yǔ)法,用于在不修改原函數(shù)代碼的情況下,為函數(shù)添加額外的功能或修改函數(shù)的行為,這篇文章主要介紹了python裝飾器帶參數(shù)和不帶參數(shù)的相關(guān)知識(shí),需要的朋友可以參考下2024-05-05