opencv3/C++圖像濾波實現(xiàn)方式
更新時間:2019年12月11日 14:31:40 作者:阿卡蒂奧
今天小編就為大家分享一篇opencv3/C++圖像濾波實現(xiàn)方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
圖像濾波在opencv中可以有多種實現(xiàn)形式
自定義濾波
如使用3×3的掩模:
對圖像進行處理.
使用函數(shù)filter2D()實現(xiàn)
#include<opencv2/opencv.hpp> using namespace cv; int main() { //函數(shù)調(diào)用filter2D功能 Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input", src); src.copyTo(dst); Mat kernel = (Mat_<int>(3,3)<<1,1,1,1,1,-1,-1,-1,-1); double t = (double)getTickCount(); filter2D(src, dst, src.depth(), kernel); std::cout<<((double)getTickCount()-t)/getTickFrequency()<<std::endl; namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output", dst); printf("%d",src.channels()); waitKey(); return 0; }
通過像素點操作實現(xiàn)
#include<opencv2/opencv.hpp> using namespace cv; int main() { Mat src, dst; src = imread("E:/image/image/daibola.jpg"); CV_Assert(src.depth() == CV_8U); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input",src); src.copyTo(dst); for(int row = 1; row<(src.rows - 1); row++) { const uchar* previous = src.ptr<uchar>(row - 1); const uchar* current = src.ptr<uchar>(row); const uchar* next = src.ptr<uchar>(row + 1); uchar* output = dst.ptr<uchar>(row); for(int col = src.channels(); col < (src.cols - 1)*src.channels(); col++) { *output = saturate_cast<uchar>(1 * current[col] + previous[col] - next[col] + current[col - src.channels()] - current[col + src.channels()]); output++; } } namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output",dst); waitKey(); return 0; }
特定形式濾波
常用的有:
blur(src,dst,Size(5,5));均值濾波
GaussianBlur(src,dst,Size(5,5),11,11);高斯濾波
medianBlur(src,dst,5);中值濾波(應對椒鹽噪聲)
bilateralFilter(src,dst,2,0.5,2,4);雙邊濾波(保留邊緣)
#include<opencv2/opencv.hpp> using namespace cv; int main() { Mat src, dst; src = imread("E:/image/image/daibola.jpg"); CV_Assert(src.depth() == CV_8U); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input",src); src.copyTo(dst); //均值濾波 blur(src,dst,Size(5,5)); //中值濾波 //medianBlur(src,dst,5); namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output",dst); waitKey(); return 0; }
以上這篇opencv3/C++圖像濾波實現(xiàn)方式就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
C/C++函數(shù)調(diào)用棧的實現(xiàn)方法
這篇文章主要介紹了C/C++函數(shù)調(diào)用棧的實現(xiàn)方法,可實現(xiàn)一個簡單的腳本解釋器,具有一定的參考借鑒價值,需要的朋友可以參考下2014-10-10