python 實現(xiàn)檢驗33品種數(shù)據(jù)是否是正態(tài)分布
更新時間:2019年12月09日 14:38:42 作者:云金杞
今天小編就為大家分享一篇python 實現(xiàn)檢驗33品種數(shù)據(jù)是否是正態(tài)分布,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
我就廢話不多說了,直接上代碼吧!
# -*- coding: utf-8 -*- """ Created on Thu Jun 22 17:03:16 2017 @author: yunjinqi E-mail:yunjinqi@qq.com Differentiate yourself in the world from anyone else. """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.tsa.stattools as ts import statsmodels.api as sm from statsmodels.graphics.api import qqplot from statsmodels.sandbox.stats.runs import runstest_1samp import scipy.stats as sts namelist=['cu','al','zn','pb','sn','au','ag','rb','hc','bu','ru','m9','y9','a9', 'p9','c9','cs','jd','l9','v9','pp','j9','jm','i9','sr','cf', 'zc','fg','ta','ma','oi','rm','sm'] j=0 for i in namelist: filename='C:/Users/HXWD/Desktop/數(shù)據(jù)/'+i+'.csv' data=pd.read_csv(filename,encoding='gbk') data.columns=['date','open','high','low','close','amt','opi'] data.head() data=np.log(data['close']) r=data-data.shift(1) r=r.dropna() #print(r) rate = np.array(list(r)) print('品種{}數(shù)據(jù)長度{}均值{}標準差{}方差{}偏度{}峰度{}'.format(i,len(rate), rate.mean(),rate.std(),rate.var(),sts.skew(rate), sts.kurtosis(rate)))
#結(jié)果 品種cu數(shù)據(jù)長度4976均值0.00012152573153376814標準差0.014276535327917023方差0.0002038194609692628偏度-0.16028824462338614峰度2.642455989417427 品種al數(shù)據(jù)長度5406均值-2.3195089066551237e-05標準差0.009053990835143359方差8.197475004285994e-05偏度-0.34748915595295604峰度5.083890815632417 品種zn數(shù)據(jù)長度2455均值-0.00011823058103745542標準差0.016294570963077237方差0.00026551304287075983偏度-0.316153612624431峰度1.7208737518119293 品種pb數(shù)據(jù)長度1482均值-9.866770650275384e-05標準差0.011417348325010642方差0.0001303558427746233偏度-0.21599833469407717峰度5.878332673854807 品種sn數(shù)據(jù)長度510均值0.00034131697514080907標準差0.013690993291257949方差0.00018744329730127014偏度0.024808842588775293峰1.072347367872859 品種au數(shù)據(jù)長度2231均值0.0001074021979121701標準差0.012100456199756058方差0.00014642104024221482偏度-0.361814930575112峰度4.110915875328322 品種ag數(shù)據(jù)長度1209均值-0.0003262089978362889標準差0.014853094655086982方差0.00022061442083297348偏度-0.2248883178719188峰度4.296247290616826 品種rb數(shù)據(jù)長度1966均值-6.984154093694264e-05標準差0.013462363746262961方差0.00018123523763669528偏度0.07827546016742666峰度5.198115698123077 品種hc數(shù)據(jù)長度758均值-7.256339078572361e-05標準差0.01710980071993581方差0.000292745280675916偏度-0.08403481899486816峰度3.6250669416786323 品種bu數(shù)據(jù)長度864均值-0.0006258998207218544標準差0.01716581014361468方差0.0002946650378866246偏度-0.41242405508236435峰度2.437556911829674 品種ru數(shù)據(jù)長度4827均值5.17426767764321e-05標準差0.016747187916000945方差0.00028046830309384806偏度-0.1986573449586119峰度1.736876616149547 品種m9數(shù)據(jù)長度4058均值8.873778774208505e-05標準差0.012812626470272115方差0.0001641633970667177偏度-0.12119836197638824峰度2.159984922606264 品種y9數(shù)據(jù)長度2748均值4.985975458693667e-05標準差0.012855191360434762方差0.00016525594491339655偏度-0.33456507243405786峰度2.566586342814616 品種a9數(shù)據(jù)長度5392均值9.732600802295795e-05標準差0.010601259945310599方差0.00011238671242804687偏度-0.08768586026629852峰度3.898562231789457 品種p9數(shù)據(jù)長度2311均值-0.00021108840931287863標準差0.014588073181583774方差0.00021281187915124373偏度-0.2881364812318466峰度1.693401619226936 品種c9數(shù)據(jù)長度3075均值0.00010060972262212708標準差0.007206853641314312方差5.1938739407325355e-05偏度-5.204419912904765e-05峰6.074899127691497 品種cs數(shù)據(jù)長度573均值-0.0006465907683602394標準差0.011237570390237955方差0.00012628298827555283偏度0.10170996173895988峰度1.176384982024672 品種jd數(shù)據(jù)長度847均值-9.035290965408637e-05標準差0.01167344224455134方差0.00013626925383687581偏度-0.0682866825422671峰度2.0899893901516133 品種l9數(shù)據(jù)長度2370均值-0.00014710186232216803標準差0.014902467199956509方差0.00022208352864577958偏度-0.2105262196327885峰度1.8796065573836 品種v9數(shù)據(jù)長度1927均值-5.190379527562386e-05標準差0.010437020362123387方差0.00010893139403937818偏度-0.050531345744352064峰度3.47595007264211 品種pp數(shù)據(jù)長度773均值-0.0003789841804842144標準差0.01439578332841083方差0.00020723857763855122偏度0.05479337073436029峰度1.3397870170464232 品種j9數(shù)據(jù)長度1468均值-0.00021854062264841954標準差0.01639429047795793方差0.000268772760275662偏度-0.10048542944058193峰度5.156597958913997 品種jm數(shù)據(jù)長度997均值-0.00011645794468155402標準差0.01792430947223131方差0.000321280870056321偏度0.0010592028961588294峰度3.743159578760195 品種i9數(shù)據(jù)長度862均值-0.0007372124442033161標準差0.021187573227350754方差0.0004489132592643504偏度0.00014411506989559858峰度1.585951370650 品種sr數(shù)據(jù)長度2749均值0.00012213466321006727標準差0.012183745931527473方差0.00014844366492401223偏度-0.038613285961243735峰度2.520231613626 品種cf數(shù)據(jù)長度3142均值2.2008517526768612e-05標準差0.010657271857464626方差0.00011357744344390753偏度-0.034412876065561426峰度5.6421501855702 品種zc數(shù)據(jù)長度475均值0.00041282070613302206標準差0.015170141171075784方差0.00023013318315036853偏度-0.1393361750238265峰度1.2533894316392926 品種fg數(shù)據(jù)長度1068均值-1.57490340832121e-05標準差0.013148411070446203方差0.00017288071367743227偏度0.008980132282547534峰度1.9028507879273144 品種ta數(shù)據(jù)長度2518均值-0.00023122774877981512標準差0.013637519813532077方差0.00018598194666447998偏度-0.9126347458178135峰度10.954670464918 品種ma數(shù)據(jù)長度700均值-0.00024988691257348835標準差0.015328611435734359方差0.00023496632854772616偏度0.0164362832185746峰度1.1736088397060 品種oi數(shù)據(jù)長度1098均值-0.0004539513793265549標準差0.009589990427720812方差9.196791640377678e-05偏度-0.28987574371279706峰度3.871322266527967 品種rm數(shù)據(jù)長度1049均值1.458523923966432e-05標準差0.013432556545527753方差0.00018043357534880047偏度-0.053300026893851014峰度1.3938292783638 品種sm數(shù)據(jù)長度548均值-3.179600698107184e-05標準差0.020018458278106444方差0.00040073867183228846偏度-2.6734390275887647峰度31.533801188366837 #正態(tài)分布的偏度應(yīng)該是0,峰度是3,所以,不滿者這些的都是非標準正態(tài)分布
以上這篇python 實現(xiàn)檢驗33品種數(shù)據(jù)是否是正態(tài)分布就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
利用Pandas 創(chuàng)建空的DataFrame方法
下面小編就為大家分享一篇利用Pandas 創(chuàng)建空的DataFrame方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-04-04pycharm軟件實現(xiàn)設(shè)置自動保存操作
這篇文章主要介紹了pycharm軟件實現(xiàn)設(shè)置自動保存操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-06-06python 實現(xiàn)批量替換文本中的某部分內(nèi)容
今天小編就為大家分享一篇python 實現(xiàn)批量替換文本中的某部分內(nèi)容,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-12-12