python sklearn常用分類算法模型的調(diào)用
本文實(shí)例為大家分享了python sklearn分類算法模型調(diào)用的具體代碼,供大家參考,具體內(nèi)容如下
實(shí)現(xiàn)對(duì)'NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT'模型的簡(jiǎn)單調(diào)用。
# coding=gbk
import time
from sklearn import metrics
import pickle as pickle
import pandas as pd
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in list(best_parameters.items()):
print(para, val)
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data(data_file):
data = pd.read_csv(data_file)
train = data[:int(len(data)*0.9)]
test = data[int(len(data)*0.9):]
train_y = train.label
train_x = train.drop('label', axis=1)
test_y = test.label
test_x = test.drop('label', axis=1)
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
data_file = "H:\\Research\\data\\trainCG.csv"
thresh = 0.5
model_save_file = None
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
print('reading training and testing data...')
train_x, train_y, test_x, test_y = read_data(data_file)
for classifier in test_classifiers:
print('******************* %s ********************' % classifier)
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print('training took %fs!' % (time.time() - start_time))
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
accuracy = metrics.accuracy_score(test_y, predict)
print('accuracy: %.2f%%' % (100 * accuracy))
if model_save_file != None:
pickle.dump(model_save, open(model_save_file, 'wb'))
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python實(shí)現(xiàn)CNN的多通道輸入實(shí)例
今天小編就為大家分享一篇Python實(shí)現(xiàn)CNN的多通道輸入實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2020-01-01
Python 獲取ftp服務(wù)器文件時(shí)間的方法
今天小編就為大家分享一篇Python 獲取ftp服務(wù)器文件時(shí)間的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-07-07
python GUI庫圖形界面開發(fā)之PyQt5復(fù)選框控件QCheckBox詳細(xì)使用方法與實(shí)例
這篇文章主要介紹了python GUI庫圖形界面開發(fā)之PyQt5復(fù)選框控件QCheckBox詳細(xì)使用方法與實(shí)例,需要的朋友可以參考下2020-02-02
利用Celery實(shí)現(xiàn)Django博客PV統(tǒng)計(jì)功能詳解
給網(wǎng)站增加pv、uv統(tǒng)計(jì),可以是件很簡(jiǎn)單的事,也可以是件很復(fù)雜的事。下面這篇文章主要給大家介紹了利用Celery實(shí)現(xiàn)Django博客PV統(tǒng)計(jì)功能的相關(guān)資料,文中介紹的非常詳細(xì),需要的朋友可以參考借鑒,下面來一起看看吧。2017-05-05
Python自定義類的數(shù)組排序?qū)崿F(xiàn)代碼
這篇文章主要介紹了Python自定義類的數(shù)組排序?qū)崿F(xiàn)代碼,需要的朋友可以參考下2016-08-08
深入了解Python中Pytest Markers的使用方法
從這篇開始,逐一解決fixture是啥,mark是啥,參數(shù)request是啥,鉤子函數(shù)是啥,parametrize參數(shù)化是啥,這些問題,本片先介紹一下mark是啥,以及如何使用2023-09-09
nginx黑名單和django限速,最簡(jiǎn)單的防惡意請(qǐng)求方法分享
今天小編就為大家分享一篇nginx黑名單和django限速,最簡(jiǎn)單的防惡意請(qǐng)求方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-08-08
Python seek()和tell()函數(shù)的具體使用
本文主要介紹了Python seek()和tell()函數(shù)的具體使用,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2023-02-02

