Pytorch 實現(xiàn)自定義參數(shù)層的例子
更新時間:2019年08月17日 14:13:08 作者:青盞
今天小編就為大家發(fā)信息一篇Pytorch 實現(xiàn)自定義參數(shù)層的例子,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
注意,一般官方接口都帶有可導功能,如果你實現(xiàn)的層不具有可導功能,就需要自己實現(xiàn)梯度的反向傳遞。
官方Linear層:
class Linear(Module): def __init__(self, in_features, out_features, bias=True): super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input): return F.linear(input, self.weight, self.bias) def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None )
實現(xiàn)view層
class Reshape(nn.Module): def __init__(self, *args): super(Reshape, self).__init__() self.shape = args def forward(self, x): return x.view((x.size(0),)+self.shape)
實現(xiàn)LinearWise層
class LinearWise(nn.Module): def __init__(self, in_features, bias=True): super(LinearWise, self).__init__() self.in_features = in_features self.weight = nn.Parameter(torch.Tensor(self.in_features)) if bias: self.bias = nn.Parameter(torch.Tensor(self.in_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(0)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input): x = input * self.weight if self.bias is not None: x = x + self.bias return x
以上這篇Pytorch 實現(xiàn)自定義參數(shù)層的例子就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關文章
利用python將?Matplotlib?可視化插入到?Excel表格中
這篇文章主要介紹了利用python將?Matplotlib?可視化?插入到?Excel?表格中,通過使用xlwings模塊來控制Excel插入圖表,具體詳細需要的朋友可以參考下面文章內容2022-06-06