Python繪制并保存指定大小圖像的方法
繪制直線,三角形,正方形
import matplotlib.pyplot as plt def plotLine(): x = [1,2,3,4,5] y = [3,3,3,3,3] plt.figure(figsize=(100,100),dpi=1) plt.plot(x,y,linewidth=150) plt.axis('off') plt.savefig('C:\\Users\\Administrator\\Desktop\\分形圖\\a.jpg',dpi=1) plt.show() plt.close() def plotTriangle(): x = [1,3,1,1] y = [1,1,3,1] plt.figure(figsize=(100,100),dpi=1) plt.plot(x,y,linewidth=150) plt.axis('off') plt.savefig('C:\\Users\\Administrator\\Desktop\\分形圖\\b.jpg',dpi=1) plt.show() plt.close() def plotSquare(): x = [1,3,3,1,1] y = [1,1,3,3,1] plt.figure(figsize=(100,100),dpi=1) plt.plot(x,y,linewidth=150) plt.axis('off') plt.savefig('C:\\Users\\Administrator\\Desktop\\分形圖\\c.jpg',dpi=1) plt.show() plt.close() plotLine() plotTriangle() plotSquare()
from datetime import datetime import os import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from six.moves import xrange data = np.load('data/final37.npy') data_images = data data_images = data_images.reshape(-1,3,61) # data_images = data_images[500:1000,:,:] for i in range(2000): plt.figure(figsize=(100,100),dpi=1) plt.plot(data_images[i][0][0:30],data_images[i][0][30:60],color='blue',linewidth=150) plt.plot(data_images[i][1][0:30],data_images[i][1][30:60],color='red',linewidth=150) plt.plot(data_images[i][2][0:30],data_images[i][2][30:60],color='green',linewidth=150) plt.axis('off') plt.savefig('C:\\Users\\Administrator\\Desktop\\調(diào)整分辨率\\原始圖\\resouce%d.jpg' %(i),dpi=1) plt.close() ################################################################################# # 生成隨機(jī)分叉圖 # import random # import numpy as np # import operator # import os # import copy # from matplotlib.font_manager import FontProperties # from scipy.interpolate import lagrange # import random # import matplotlib.pyplot as plt # np.set_printoptions(threshold=np.inf) #輸出全部矩陣不帶省略號(hào) # # random.seed(10) # finaldata = [] # for iy in range(100): # #固定一個(gè)點(diǎn),盡量使點(diǎn)固定在0-1正方形的中間 #小數(shù)點(diǎn)后16位 # pointx = random.uniform(0.3,0.7) # pointy = random.uniform(0.3,0.7) # ################################################# # #主分支在上方 # a1x = random.uniform(pointx,0.8)#使第二個(gè)點(diǎn)盡量不那么大 # a2x = random.uniform(a1x,1) # a3x = random.uniform(a2x,1) # a1y = random.uniform(pointy,0.8) # a2y = random.uniform(a1y,1) # a3y = random.uniform(a2y,1) # ax = [pointx,a1x,a2x,a3x] # ay = [pointy,a1y,a2y,a3y] # # print(ax) # # print(ay) # #對(duì)主分支a段進(jìn)行插值 # #在ax相同索引直接分別插兩個(gè)點(diǎn),最后a段長(zhǎng)度由4變成10,既得final_ax # # print(ay) # final_ax = [] # final_ay = [] # for i in range(len(ax)-1): # #round(data,8)小數(shù)點(diǎn)保留8位四舍五入 # f = lagrange([round(ax[i],8),round(ax[i+1],8)],[round(ay[i],8),round(ay[i+1],8)]) # insertax = np.linspace(ax[i],ax[i+1],4)#插入2個(gè)點(diǎn),小數(shù)點(diǎn)后8位 # insertay = f(insertax) # for axi in insertax: # final_ax.append(axi) # for ayi in insertay: # final_ay.append(ayi) # del final_ax[4] # del final_ax[7] # del final_ay[4] # del final_ay[7] # ################################################# # # #左下分支 # b1x = random.uniform(0.2,pointx)#使第二個(gè)點(diǎn)盡量不那么小 # b2x = random.uniform(0,b1x) # b3x = random.uniform(0,b2x) # b1y = random.uniform(0.2,pointy) # b2y = random.uniform(0,b1y) # b3y = random.uniform(0,b2y) # bx = [b3x,b2x,b1x,pointx] # by = [b3y,b2y,b1y,pointy] # #對(duì)左下分支b段進(jìn)行插值 # final_bx = [] # final_by = [] # for i in range(len(bx)-1): # f = lagrange([round(bx[i],8),round(bx[i+1],8)],[round(by[i],8),round(by[i+1],8)]) # insertbx = np.linspace(bx[i],bx[i+1],4) # insertby = f(insertbx) # for bxi in insertbx: # final_bx.append(bxi) # for byi in insertby: # final_by.append(byi) # del final_bx[4] # del final_bx[7] # del final_by[4] # del final_by[7] # # ################################################## # #右下分支 # c1x = random.uniform(pointx,0.8)#使第二個(gè)點(diǎn)盡量不那么大 # c2x = random.uniform(c1x,1) # c3x = random.uniform(c2x,1) # c1y = random.uniform(0.2,pointy) # c2y = random.uniform(0,c1y) # c3y = random.uniform(0,c2y) # cx = [pointx,c1x,c2x,c3x] # cy = [pointy,c1y,c2y,c3y] # #對(duì)右下分支段進(jìn)行插值 # final_cx = [] # final_cy = [] # for i in range(len(cx)-1): # f = lagrange([round(cx[i],8),round(cx[i+1],8)],[round(cy[i],8),round(cy[i+1],8)]) # insertcx = np.linspace(cx[i],cx[i+1],4) # insertcy = f(insertcx) # for cxi in insertcx: # final_cx.append(cxi) # for cyi in insertcy: # final_cy.append(cyi) # del final_cx[4] # del final_cx[7] # del final_cy[4] # del final_cy[7] # #################################################### # x = [final_ax,final_bx,final_cx]#三分叉,上為a,左下b,右下c # y = [final_ay,final_by,final_cy] # diameter_a = round(random.uniform(0.2,0.25),8) # diameter_b = round(random.uniform(0.1,0.2),8) # diameter_c = round(random.uniform(0.1,0.2),8) # final_a = []#長(zhǎng)度為21前10個(gè)x坐標(biāo)點(diǎn),后面10個(gè)是y坐標(biāo)點(diǎn),最后一個(gè)是管徑 # for ax in final_ax: # final_a.append(ax) # for ay in final_ay: # final_a.append(ay) # final_a.append(diameter_a) # final_b = [] # for bx in final_bx: # final_b.append(bx) # for by in final_by: # final_b.append(by) # final_b.append(diameter_b) # final_c = [] # for cx in final_cx: # final_c.append(cx) # for cy in final_cy: # final_c.append(cy) # final_c.append(diameter_c) # finalabc = [final_a,final_b,final_c] # finaldata.append(finalabc) # finaldata = np.array(finaldata) # #復(fù)制改變a,不改變b # finaldata1 = finaldata.copy() # finaldata2 = finaldata.copy() # finaldata3 = finaldata.copy() # #以定點(diǎn)為中心,進(jìn)行鏡像處理 # finaldata1[:,:,0:10] = 2 * pointx -finaldata[:,:,0:10] # finaldata2[:,:,10:20] = 2 * pointx -finaldata[:,:,10:20] # finaldata3[:,:,0:20] = 2 * pointx -finaldata[:,:,0:20] # final = np.concatenate((finaldata,finaldata1,finaldata2,finaldata3),axis=0) # np.random.shuffle(final)#隨機(jī)打亂數(shù)據(jù),若沒(méi)有次句,將連續(xù)輸出一個(gè)方向 # print(final.shape) # # np.save('C:\\Users\\Administrator\\Desktop\\第9周\\80000.npy',final) # ########################################### # # 單個(gè)可視化圖像 # for i in range(len(final)): # abc = final[i] # plt.plot(abc[0][0:10],abc[0][10:20],color='blue',linewidth=1.5) # plt.plot(abc[1][0:10],abc[1][10:20],color='red',linewidth=1.5) # plt.plot(abc[2][0:10],abc[2][10:20],color='green',linewidth=1.5) # plt.axis('off') # plt.savefig('C:\\Users\\Administrator\\Desktop\\ttt\\原圖2\\random%d.jpg' %i,dpi=100) # plt.close() ########################################### # 分塊可視化圖像 # data = np.load('C:\\Users\\Administrator\\Desktop\\第8周\\10000.npy') # print(data.shape) # rows,cols = 5,5 # fig,axs = plt.subplots(rows,cols) # cnt = 0 # for i in range(rows): # for j in range(cols): # xy = final[cnt]#第n個(gè)分叉圖,有三個(gè)分支,每個(gè)分支21個(gè)數(shù) # for k in range(len(xy)): # x = xy[k][0:10] # y = xy[k][10:20] # if k == 0 : # axs[i,j].plot(x,y,color='blue',linewidth=xy[k][20]*15) # if k == 1: # axs[i,j].plot(x,y,color='red',linewidth=xy[k][20]*15) # if k == 2: # axs[i,j].plot(x,y,color='green',linewidth=xy[k][20]*15) # axs[i,j].axis('off') # cnt +=1 # # plt.savefig('C:\\Users\\Administrator\\Desktop\\第9周\\') # plt.show()
以上這篇Python繪制并保存指定大小圖像的方法就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python使用Cv2模塊識(shí)別驗(yàn)證碼的操作方法
這篇文章主要介紹了Python使用Cv2模塊識(shí)別驗(yàn)證碼,使用Cv2模塊、pytesseract模塊進(jìn)行操作,pytesseract模塊將智能識(shí)別圖片字體數(shù)字,用于打印出來(lái),本文通過(guò)代碼案例給大家詳細(xì)講解,需要的朋友可以參考下2023-01-01for循環(huán)在Python中的工作原理詳細(xì)
for...in 是Python程序員使用最多的語(yǔ)句,for 循環(huán)用于迭代容器對(duì)象中的元素,這些對(duì)象可以是列表、元組、字典、集合、文件,甚至可以是自定義類或者函數(shù),下面小編將舉例說(shuō)明,需要的朋友可以參考下2021-10-10python使用Psutil模塊實(shí)現(xiàn)獲取計(jì)算機(jī)相關(guān)信息
psutil 是一個(gè)跨平臺(tái)的庫(kù),用于獲取進(jìn)程和系統(tǒng)運(yùn)行狀態(tài)的信息,這篇文章主要為大家詳細(xì)介紹了python如何調(diào)用psutil模塊實(shí)現(xiàn)獲取計(jì)算機(jī)相關(guān)信息,有需要的小伙伴可以了解下2023-11-11Python常見(jiàn)庫(kù)matplotlib學(xué)習(xí)筆記之畫(huà)圖中各個(gè)模塊的含義及修改方法
matplotlib是python最著名的繪圖庫(kù),它提供了一整套和matlab相似的命令A(yù)PI,十分適合交互式地進(jìn)行制圖,下面這篇文章主要給大家介紹了關(guān)于Python常見(jiàn)庫(kù)matplotlib學(xué)習(xí)筆記之畫(huà)圖中各個(gè)模塊的含義及修改方法的相關(guān)資料,需要的朋友可以參考下2023-05-05Python實(shí)現(xiàn)遍歷子文件夾并將文件復(fù)制到不同的目標(biāo)文件夾
這篇文章主要介紹了如何基于Python語(yǔ)言實(shí)現(xiàn)遍歷多個(gè)子文件夾,將每一個(gè)子文件夾中大量的文件,按照每一個(gè)文件的文件名稱的特點(diǎn)復(fù)制到不同的目標(biāo)文件夾中,感興趣的可以了解下2023-08-08python使用正則表達(dá)式(Regular Expression)方法超詳細(xì)
這篇文章主要介紹了python使用正則表達(dá)式(Regular Expression)方法超詳細(xì),文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-12-12Python 用turtle實(shí)現(xiàn)用正方形畫(huà)圓的例子
今天小編就為大家分享一篇Python 用turtle實(shí)現(xiàn)用正方形畫(huà)圓的例子,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-11-11