python dataframe向下向上填充,fillna和ffill的方法
首先新建一個dataframe:
In[8]: df = pd.DataFrame({'name':list('ABCDA'),'house':[1,1,2,3,3],'date':['2010-01-01','2010-06-09','2011-12-03','2011-04-05','2012-03-23']}) In[9]: df Out[9]: date house name 0 2010-01-01 1 A 1 2010-06-09 1 B 2 2011-12-03 2 C 3 2011-04-05 3 D 4 2012-03-23 3 A
將date列改為時(shí)間類型:
In[12]: df.date = pd.to_datetime(df.date)
數(shù)據(jù)的含義是這樣的,我們有ABCD四個人的數(shù)據(jù),已知A在2010-01-01的時(shí)候,名下有1套房,B在2010-06-09的時(shí)候,名下有1套房,C在2011-12-03的時(shí)候,有2套房,D在2011-04-05的時(shí)候有3套房,A在2012-02-23的時(shí)候,數(shù)據(jù)更新了,有兩套房。
要求在有姓名和時(shí)間的情況下,能給出其名下有幾套房:
比如A在2010-01-01與2012-03-23期間任意一天,都應(yīng)該是1套房,在2012-03-23之后,都是3套房。
我們使用pandas的fillna方法,選擇ffill。
首先我們獲得一個2010-01-01到2017-12-01的dataframe
In[14]: time_range = pd.DataFrame( pd.date_range('2010-01-01','2017-12-01',freq='D'), columns=['date']).set_index("date") In[15]: time_range Out[15]: Empty DataFrame Columns: [] Index: [2010-01-01 00:00:00, 2010-01-02 00:00:00, 2010-01-03 00:00:00, 2010-01-04 00:00:00, 2010-01-05 00:00:00, 2010-01-06 00:00:00, 2010-01-07 00:00:00, 2010-01-08 00:00:00, 2010-01-09 00:00:00, 2010-01-10 00:00:00, 2010-01-11 00:00:00, 2010-01-12 00:00:00, 2010-01-13 00:00:00, 2010-01-14 00:00:00, 2010-01-15 00:00:00, 2010-01-16 00:00:00, 2010-01-17 00:00:00, 2010-01-18 00:00:00, 2010-01-19 00:00:00, 2010-01-20 00:00:00, 2010-01-21 00:00:00, 2010-01-22 00:00:00, 2010-01-23 00:00:00, 2010-01-24 00:00:00, 2010-01-25 00:00:00, 2010-01-26 00:00:00, 2010-01-27 00:00:00, 2010-01-28 00:00:00, 2010-01-29 00:00:00, 2010-01-30 00:00:00, 2010-01-31 00:00:00, 2010-02-01 00:00:00, 2010-02-02 00:00:00, 2010-02-03 00:00:00, 2010-02-04 00:00:00, 2010-02-05 00:00:00, 2010-02-06 00:00:00, 2010-02-07 00:00:00, 2010-02-08 00:00:00, 2010-02-09 00:00:00, 2010-02-10 00:00:00, 2010-02-11 00:00:00, 2010-02-12 00:00:00, 2010-02-13 00:00:00, 2010-02-14 00:00:00, 2010-02-15 00:00:00, 2010-02-16 00:00:00, 2010-02-17 00:00:00, 2010-02-18 00:00:00, 2010-02-19 00:00:00, 2010-02-20 00:00:00, 2010-02-21 00:00:00, 2010-02-22 00:00:00, 2010-02-23 00:00:00, 2010-02-24 00:00:00, 2010-02-25 00:00:00, 2010-02-26 00:00:00, 2010-02-27 00:00:00, 2010-02-28 00:00:00, 2010-03-01 00:00:00, 2010-03-02 00:00:00, 2010-03-03 00:00:00, 2010-03-04 00:00:00, 2010-03-05 00:00:00, 2010-03-06 00:00:00, 2010-03-07 00:00:00, 2010-03-08 00:00:00, 2010-03-09 00:00:00, 2010-03-10 00:00:00, 2010-03-11 00:00:00, 2010-03-12 00:00:00, 2010-03-13 00:00:00, 2010-03-14 00:00:00, 2010-03-15 00:00:00, 2010-03-16 00:00:00, 2010-03-17 00:00:00, 2010-03-18 00:00:00, 2010-03-19 00:00:00, 2010-03-20 00:00:00, 2010-03-21 00:00:00, 2010-03-22 00:00:00, 2010-03-23 00:00:00, 2010-03-24 00:00:00, 2010-03-25 00:00:00, 2010-03-26 00:00:00, 2010-03-27 00:00:00, 2010-03-28 00:00:00, 2010-03-29 00:00:00, 2010-03-30 00:00:00, 2010-03-31 00:00:00, 2010-04-01 00:00:00, 2010-04-02 00:00:00, 2010-04-03 00:00:00, 2010-04-04 00:00:00, 2010-04-05 00:00:00, 2010-04-06 00:00:00, 2010-04-07 00:00:00, 2010-04-08 00:00:00, 2010-04-09 00:00:00, 2010-04-10 00:00:00, ...] [2892 rows x 0 columns]
然后用上上篇博客中提到的pivot_table將原本的df轉(zhuǎn)變之后,與time_range進(jìn)行merger操作。
In[16]: df = pd.pivot_table(df, columns='name', index='date') In[17]: df Out[17]: house name A B C D date 2010-01-01 1.0 NaN NaN NaN 2010-06-09 NaN 1.0 NaN NaN 2011-04-05 NaN NaN NaN 3.0 2011-12-03 NaN NaN 2.0 NaN 2012-03-23 3.0 NaN NaN NaN In[18]: df = df.merge(time_range,how="right", left_index=True, right_index=True)
然后再進(jìn)行向下填充操作:
In[20]: df = df.fillna(method='ffill')
最后:
df = df.stack().reset_index()
結(jié)果太長,這里就不粘貼了。如果想向上填充,可選擇method = 'bfill‘
以上這篇python dataframe向下向上填充,fillna和ffill的方法就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
- python 怎樣將dataframe中的字符串日期轉(zhuǎn)化為日期的方法
- Python pandas.DataFrame 找出有空值的行
- Python DataFrame一列拆成多列以及一行拆成多行
- Python pandas.DataFrame調(diào)整列順序及修改index名的方法
- Python實(shí)現(xiàn)從SQL型數(shù)據(jù)庫讀寫dataframe型數(shù)據(jù)的方法【基于pandas】
- python DataFrame 取差集實(shí)例
- 使用Python向DataFrame中指定位置添加一列或多列的方法
- Python如何在DataFrame增加數(shù)值
相關(guān)文章
Python中用于轉(zhuǎn)換字母為小寫的lower()方法使用簡介
這篇文章主要介紹了Python中用于轉(zhuǎn)換字母為小寫的lower()方法使用,是Python學(xué)習(xí)中的基礎(chǔ)知識,需要的朋友可以參考下2015-05-05Python除法保留兩位小數(shù)點(diǎn)的三種方法實(shí)現(xiàn)
這篇文章主要給大家介紹了關(guān)于Python除法保留兩位小數(shù)點(diǎn)的三種方法實(shí)現(xiàn),在py應(yīng)用中有許多拿結(jié)果中的多個整數(shù)進(jìn)行運(yùn)算,難免少不了除法(如單位換算等),但是整數(shù)進(jìn)行運(yùn)算后只會返回整數(shù),一般結(jié)果基本需要精確到后兩位,需要的朋友可以參考下2023-08-08Python使用random模塊生成隨機(jī)數(shù)操作實(shí)例詳解
這篇文章主要介紹了Python使用random模塊生成隨機(jī)數(shù)操作,結(jié)合具體實(shí)例形式詳細(xì)分析了random模塊生成隨機(jī)數(shù)的各種常用技巧與相關(guān)操作注意事項(xiàng),需要的朋友可以參考下2019-09-09基于Python實(shí)現(xiàn)股票數(shù)據(jù)分析的可視化
在購買股票的時(shí)候,可以使用歷史數(shù)據(jù)來對當(dāng)前的股票的走勢進(jìn)行預(yù)測,這就需要對股票的數(shù)據(jù)進(jìn)行獲取并且進(jìn)行一定的分析。本文將介紹如何通過Python實(shí)現(xiàn)股票數(shù)據(jù)分析的可視化,需要的可以參考一下2021-12-12