Tensorflow使用支持向量機(jī)擬合線性回歸
支持向量機(jī)可以用來(lái)擬合線性回歸。
相同的最大間隔(maximum margin)的概念應(yīng)用到線性回歸擬合。代替最大化分割兩類目標(biāo)是,最大化分割包含大部分的數(shù)據(jù)點(diǎn)(x,y)。我們將用相同的iris數(shù)據(jù)集,展示用剛才的概念來(lái)進(jìn)行花萼長(zhǎng)度與花瓣寬度之間的線性擬合。
相關(guān)的損失函數(shù)類似于max(0,|yi-(Axi+b)|-ε)。ε這里,是間隔寬度的一半,這意味著如果一個(gè)數(shù)據(jù)點(diǎn)在該區(qū)域,則損失等于0。
# SVM Regression #---------------------------------- # # This function shows how to use TensorFlow to # solve support vector regression. We are going # to find the line that has the maximum margin # which INCLUDES as many points as possible # # We will use the iris data, specifically: # y = Sepal Length # x = Pedal Width import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from sklearn import datasets from tensorflow.python.framework import ops ops.reset_default_graph() # Create graph sess = tf.Session() # Load the data # iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)] iris = datasets.load_iris() x_vals = np.array([x[3] for x in iris.data]) y_vals = np.array([y[0] for y in iris.data]) # Split data into train/test sets train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False) test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices))) x_vals_train = x_vals[train_indices] x_vals_test = x_vals[test_indices] y_vals_train = y_vals[train_indices] y_vals_test = y_vals[test_indices] # Declare batch size batch_size = 50 # Initialize placeholders x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # Create variables for linear regression A = tf.Variable(tf.random_normal(shape=[1,1])) b = tf.Variable(tf.random_normal(shape=[1,1])) # Declare model operations model_output = tf.add(tf.matmul(x_data, A), b) # Declare loss function # = max(0, abs(target - predicted) + epsilon) # 1/2 margin width parameter = epsilon epsilon = tf.constant([0.5]) # Margin term in loss loss = tf.reduce_mean(tf.maximum(0., tf.subtract(tf.abs(tf.subtract(model_output, y_target)), epsilon))) # Declare optimizer my_opt = tf.train.GradientDescentOptimizer(0.075) train_step = my_opt.minimize(loss) # Initialize variables init = tf.global_variables_initializer() sess.run(init) # Training loop train_loss = [] test_loss = [] for i in range(200): rand_index = np.random.choice(len(x_vals_train), size=batch_size) rand_x = np.transpose([x_vals_train[rand_index]]) rand_y = np.transpose([y_vals_train[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) temp_train_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])}) train_loss.append(temp_train_loss) temp_test_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])}) test_loss.append(temp_test_loss) if (i+1)%50==0: print('-----------') print('Generation: ' + str(i+1)) print('A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b))) print('Train Loss = ' + str(temp_train_loss)) print('Test Loss = ' + str(temp_test_loss)) # Extract Coefficients [[slope]] = sess.run(A) [[y_intercept]] = sess.run(b) [width] = sess.run(epsilon) # Get best fit line best_fit = [] best_fit_upper = [] best_fit_lower = [] for i in x_vals: best_fit.append(slope*i+y_intercept) best_fit_upper.append(slope*i+y_intercept+width) best_fit_lower.append(slope*i+y_intercept-width) # Plot fit with data plt.plot(x_vals, y_vals, 'o', label='Data Points') plt.plot(x_vals, best_fit, 'r-', label='SVM Regression Line', linewidth=3) plt.plot(x_vals, best_fit_upper, 'r--', linewidth=2) plt.plot(x_vals, best_fit_lower, 'r--', linewidth=2) plt.ylim([0, 10]) plt.legend(loc='lower right') plt.title('Sepal Length vs Pedal Width') plt.xlabel('Pedal Width') plt.ylabel('Sepal Length') plt.show() # Plot loss over time plt.plot(train_loss, 'k-', label='Train Set Loss') plt.plot(test_loss, 'r--', label='Test Set Loss') plt.title('L2 Loss per Generation') plt.xlabel('Generation') plt.ylabel('L2 Loss') plt.legend(loc='upper right') plt.show()
輸出結(jié)果:
----------- Generation: 50 A = [[ 2.91328382]] b = [[ 1.18453276]] Train Loss = 1.17104 Test Loss = 1.1143 ----------- Generation: 100 A = [[ 2.42788291]] b = [[ 2.3755331]] Train Loss = 0.703519 Test Loss = 0.715295 ----------- Generation: 150 A = [[ 1.84078252]] b = [[ 3.40453291]] Train Loss = 0.338596 Test Loss = 0.365562 ----------- Generation: 200 A = [[ 1.35343242]] b = [[ 4.14853334]] Train Loss = 0.125198 Test Loss = 0.16121
基于iris數(shù)據(jù)集(花萼長(zhǎng)度和花瓣寬度)的支持向量機(jī)回歸,間隔寬度為0.5
每次迭代的支持向量機(jī)回歸的損失值(訓(xùn)練集和測(cè)試集)
直觀地講,我們認(rèn)為SVM回歸算法試圖把更多的數(shù)據(jù)點(diǎn)擬合到直線兩邊2ε寬度的間隔內(nèi)。這時(shí)擬合的直線對(duì)于ε參數(shù)更有意義。如果選擇太小的ε值,SVM回歸算法在間隔寬度內(nèi)不能擬合更多的數(shù)據(jù)點(diǎn);如果選擇太大的ε值,將有許多條直線能夠在間隔寬度內(nèi)擬合所有的數(shù)據(jù)點(diǎn)。作者更傾向于選取更小的ε值,因?yàn)樵陂g隔寬度附近的數(shù)據(jù)點(diǎn)比遠(yuǎn)處的數(shù)據(jù)點(diǎn)貢獻(xiàn)更少的損失。
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Matplotlib實(shí)戰(zhàn)之折線圖繪制詳解
折線圖是一種用于可視化數(shù)據(jù)變化趨勢(shì)的圖表,它可以用于表示任何數(shù)值隨著時(shí)間或類別的變化,本文主要介紹了如何利用Matplotlib實(shí)現(xiàn)折線圖的繪制,感興趣的可以了解下2023-08-08python中使用you-get庫(kù)批量在線下載bilibili視頻的教程
這篇文章主要介紹了使用python中you-get庫(kù)批量在線下載bilibili視頻的方法,本文通過(guò)實(shí)例代碼給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-03-03使用python爬取4K壁紙保存到本地文件夾的全過(guò)程
圖片信息豐富多彩,許多網(wǎng)站上都有大量精美的圖片資源,有時(shí)候我們可能需要批量下載這些圖片,而手動(dòng)一個(gè)個(gè)下載顯然效率太低,所以本文給大家介紹了使用python爬取4K壁紙保存到本地文件夾的全過(guò)程,文中有詳細(xì)的代碼示例供大家參考,需要的朋友可以參考下2024-03-03Python實(shí)現(xiàn)二叉樹(shù)前序、中序、后序及層次遍歷示例代碼
這篇文章主要給大家介紹了關(guān)于Python實(shí)現(xiàn)二叉樹(shù)前序、中序、后序及層次遍歷的相關(guān)資料,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家學(xué)習(xí)或者使用Python具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-05-05python 利用百度API識(shí)別圖片文字(多線程版)
這篇文章主要介紹了python 利用百度API識(shí)別圖片文字(多線程版),幫助大家更好的利用python進(jìn)行機(jī)器識(shí)別,感興趣的朋友可以了解下2020-12-12VsCode終端激活anconda環(huán)境問(wèn)題解決
本文主要介紹了VsCode終端激活anconda環(huán)境問(wèn)題解決,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2024-01-01