python 實(shí)現(xiàn)A*算法的示例代碼
A*作為最常用的路徑搜索算法,值得我們?nèi)ド羁痰难芯?。路徑?guī)劃項(xiàng)目。先看一下維基百科給的算法解釋:https://en.wikipedia.org/wiki/A*_search_algorithm
A *是最佳優(yōu)先搜索它通過(guò)在解決方案的所有可能路徑(目標(biāo))中搜索導(dǎo)致成本最?。ㄐ羞M(jìn)距離最短,時(shí)間最短等)的問(wèn)題來(lái)解決問(wèn)題。 ),并且在這些路徑中,它首先考慮那些似乎最快速地引導(dǎo)到解決方案的路徑。它是根據(jù)加權(quán)圖制定的:從圖的特定節(jié)點(diǎn)開(kāi)始,它構(gòu)造從該節(jié)點(diǎn)開(kāi)始的路徑樹(shù),一次一步地?cái)U(kuò)展路徑,直到其一個(gè)路徑在預(yù)定目標(biāo)節(jié)點(diǎn)處結(jié)束。
在其主循環(huán)的每次迭代中,A *需要確定將其部分路徑中的哪些擴(kuò)展為一個(gè)或多個(gè)更長(zhǎng)的路徑。它是基于成本(總重量)的估計(jì)仍然到達(dá)目標(biāo)節(jié)點(diǎn)。具體而言,A *選擇最小化的路徑
F(N)= G(N)+ H(n)
其中n是路徑上的最后一個(gè)節(jié)點(diǎn),g(n)是從起始節(jié)點(diǎn)到n的路徑的開(kāi)銷,h(n)是一個(gè)啟發(fā)式,用于估計(jì)從n到目標(biāo)的最便宜路徑的開(kāi)銷。啟發(fā)式是特定于問(wèn)題的。為了找到實(shí)際最短路徑的算法,啟發(fā)函數(shù)必須是可接受的,這意味著它永遠(yuǎn)不會(huì)高估實(shí)際成本到達(dá)最近的目標(biāo)節(jié)點(diǎn)。
維基百科給出的偽代碼:
function A*(start, goal) // The set of nodes already evaluated closedSet := {} // The set of currently discovered nodes that are not evaluated yet. // Initially, only the start node is known. openSet := {start} // For each node, which node it can most efficiently be reached from. // If a node can be reached from many nodes, cameFrom will eventually contain the // most efficient previous step. cameFrom := an empty map // For each node, the cost of getting from the start node to that node. gScore := map with default value of Infinity // The cost of going from start to start is zero. gScore[start] := 0 // For each node, the total cost of getting from the start node to the goal // by passing by that node. That value is partly known, partly heuristic. fScore := map with default value of Infinity // For the first node, that value is completely heuristic. fScore[start] := heuristic_cost_estimate(start, goal) while openSet is not empty current := the node in openSet having the lowest fScore[] value if current = goal return reconstruct_path(cameFrom, current) openSet.Remove(current) closedSet.Add(current) for each neighbor of current if neighbor in closedSet continue // Ignore the neighbor which is already evaluated. if neighbor not in openSet // Discover a new node openSet.Add(neighbor) // The distance from start to a neighbor //the "dist_between" function may vary as per the solution requirements. tentative_gScore := gScore[current] + dist_between(current, neighbor) if tentative_gScore >= gScore[neighbor] continue // This is not a better path. // This path is the best until now. Record it! cameFrom[neighbor] := current gScore[neighbor] := tentative_gScore fScore[neighbor] := gScore[neighbor] + heuristic_cost_estimate(neighbor, goal) return failure function reconstruct_path(cameFrom, current) total_path := {current} while current in cameFrom.Keys: current := cameFrom[current] total_path.append(current) return total_path
下面是UDACITY課程中路徑規(guī)劃項(xiàng)目,結(jié)合上面的偽代碼,用python 實(shí)現(xiàn)A*
import math def shortest_path(M,start,goal): sx=M.intersections[start][0] sy=M.intersections[start][1] gx=M.intersections[goal][0] gy=M.intersections[goal][1] h=math.sqrt((sx-gx)*(sx-gx)+(sy-gy)*(sy-gy)) closedSet=set() openSet=set() openSet.add(start) gScore={} gScore[start]=0 fScore={} fScore[start]=h cameFrom={} sumg=0 NEW=0 BOOL=False while len(openSet)!=0: MAX=1000 for new in openSet: print("new",new) if fScore[new]<MAX: MAX=fScore[new] #print("MAX=",MAX) NEW=new current=NEW print("current=",current) if current==goal: return reconstruct_path(cameFrom,current) openSet.remove(current) closedSet.add(current) #dafult=M.roads(current) for neighbor in M.roads[current]: BOOL=False print("key=",neighbor) a={neighbor} if len(a&closedSet)>0: continue print("key is not in closeSet") if len(a&openSet)==0: openSet.add(neighbor) else: BOOL=True x= M.intersections[current][0] y= M.intersections[current][1] x1=M.intersections[neighbor][0] y1=M.intersections[neighbor][1] g=math.sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1)) h=math.sqrt((x1-gx)*(x1-gx)+(y1-gy)*(y1-gy)) new_gScore=gScore[current]+g if BOOL==True: if new_gScore>=gScore[neighbor]: continue print("new_gScore",new_gScore) cameFrom[neighbor]=current gScore[neighbor]=new_gScore fScore[neighbor] = new_gScore+h print("fScore",neighbor,"is",new_gScore+h) print("fScore=",new_gScore+h) print("__________++--------------++_________") def reconstruct_path(cameFrom,current): print("已到達(dá)lllll") total_path=[] total_path.append(current) for key,value in cameFrom.items(): print("key",key,":","value",value) while current in cameFrom.keys(): current=cameFrom[current] total_path.append(current) total_path=list(reversed(total_path)) return total_path
以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
python實(shí)現(xiàn)彩色圖轉(zhuǎn)換成灰度圖
這篇文章主要為大家詳細(xì)介紹了python實(shí)現(xiàn)彩色圖轉(zhuǎn)換成灰度圖,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-01-01python+selenium打印當(dāng)前頁(yè)面的titl和url方法
今天小編就為大家分享一篇python+selenium打印當(dāng)前頁(yè)面的titl和url方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-06-06使用python將mysql數(shù)據(jù)庫(kù)的數(shù)據(jù)轉(zhuǎn)換為json數(shù)據(jù)的方法
這篇文章主要介紹了使用python將mysql數(shù)據(jù)庫(kù)的數(shù)據(jù)轉(zhuǎn)換為json數(shù)據(jù)的方法,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2019-07-07Python深度學(xué)習(xí)之Keras模型轉(zhuǎn)換成ONNX模型流程詳解
這篇文章主要介紹了Python深度學(xué)習(xí)之Keras模型轉(zhuǎn)換成ONNX模型流程,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)吧2022-09-09POC漏洞批量驗(yàn)證程序Python腳本編寫(xiě)
這篇文章主要為大家介紹了POC漏洞批量驗(yàn)證程序Python腳本編寫(xiě)的完整示例代碼,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步2022-02-02Python實(shí)現(xiàn)自動(dòng)計(jì)算Excel數(shù)據(jù)指定范圍內(nèi)的區(qū)間最大值
這篇文章主要為大家詳細(xì)介紹了如何基于Python自動(dòng)計(jì)算Excel數(shù)據(jù)指定范圍內(nèi)的區(qū)間最大值,文中的示例代碼簡(jiǎn)潔易懂,感興趣的小伙伴可以了解下2023-07-07TensorFlow Saver:保存和讀取模型參數(shù).ckpt實(shí)例
今天小編就為大家分享一篇TensorFlow Saver:保存和讀取模型參數(shù).ckpt實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-02-02Python報(bào)錯(cuò):ModuleNotFoundError的解決辦法
"ModuleNotFoundError: No module named 'xxx'"這個(gè)報(bào)錯(cuò)是個(gè)非常常見(jiàn)的報(bào)錯(cuò),幾乎每個(gè)python程序員都遇到過(guò),下面這篇文章主要給大家介紹了關(guān)于Python報(bào):ModuleNotFoundError錯(cuò)誤的解決辦法,需要的朋友可以參考下2022-06-06