詳解python實(shí)現(xiàn)識別手寫MNIST數(shù)字集的程序
我們需要做的第⼀件事情是獲取 MNIST 數(shù)據(jù)。如果你是⼀個 git ⽤⼾,那么你能夠通過克隆這本書的代碼倉庫獲得數(shù)據(jù),實(shí)現(xiàn)我們的⽹絡(luò)來分類數(shù)字
git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git
class Network(object): def __init__(self, sizes): self.num_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]
在這段代碼中,列表 sizes 包含各層神經(jīng)元的數(shù)量。例如,如果我們想創(chuàng)建⼀個在第⼀層有2 個神經(jīng)元,第⼆層有 3 個神經(jīng)元,最后層有 1 個神經(jīng)元的 Network 對象,我們應(yīng)這樣寫代碼:
net = Network([2, 3, 1])
Network 對象中的偏置和權(quán)重都是被隨機(jī)初始化的,使⽤ Numpy 的 np.random.randn 函數(shù)來⽣成均值為 0,標(biāo)準(zhǔn)差為 1 的⾼斯分布。這樣的隨機(jī)初始化給了我們的隨機(jī)梯度下降算法⼀個起點(diǎn)。在后⾯的章節(jié)中我們將會發(fā)現(xiàn)更好的初始化權(quán)重和偏置的⽅法,但是⽬前隨機(jī)地將其初始化。注意 Network 初始化代碼假設(shè)第⼀層神經(jīng)元是⼀個輸⼊層,并對這些神經(jīng)元不設(shè)置任何偏置,因?yàn)槠脙H在后⾯的層中⽤于計(jì)算輸出。有了這些,很容易寫出從⼀個 Network 實(shí)例計(jì)算輸出的代碼。我們從定義 S 型函數(shù)開始:
def sigmoid(z): return 1.0/(1.0+np.exp(-z))
注意,當(dāng)輸⼊ z 是⼀個向量或者 Numpy 數(shù)組時,Numpy ⾃動地按元素應(yīng)⽤ sigmoid 函數(shù),即以向量形式。
我們?nèi)缓髮?Network 類添加⼀個 feedforward ⽅法,對于⽹絡(luò)給定⼀個輸⼊ a,返回對應(yīng)的輸出 6 。這個⽅法所做的是對每⼀層應(yīng)⽤⽅程 (22):
def feedforward(self, a): """Return the output of the network if "a" is input.""" for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a)+b) return a
當(dāng)然,我們想要 Network 對象做的主要事情是學(xué)習(xí)。為此我們給它們⼀個實(shí)現(xiàn)隨即梯度下降算法的 SGD ⽅法。代碼如下。其中⼀些地⽅看似有⼀點(diǎn)神秘,我會在代碼后⾯逐個分析
def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): """Train the neural network using mini-batch stochastic gradient descent. The "training_data" is a list of tuples "(x, y)" representing the training inputs and the desired outputs. The other non-optional parameters are self-explanatory. If "test_data" is provided then the network will be evaluated against the test data after each epoch, and partial progress printed out. This is useful for tracking progress, but slows things down substantially.""" if test_data: n_test = len(test_data) n = len(training_data) for j in xrange(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print "Epoch {0}: {1} / {2}".format( j, self.evaluate(test_data), n_test) else: print "Epoch {0} complete".format(j)
training_data 是⼀個 (x, y) 元組的列表,表⽰訓(xùn)練輸⼊和其對應(yīng)的期望輸出。變量 epochs 和mini_batch_size 正如你預(yù)料的——迭代期數(shù)量,和采樣時的⼩批量數(shù)據(jù)的⼤⼩。 eta 是學(xué)習(xí)速率,η。如果給出了可選參數(shù) test_data ,那么程序會在每個訓(xùn)練器后評估⽹絡(luò),并打印出部分進(jìn)展。這對于追蹤進(jìn)度很有⽤,但相當(dāng)拖慢執(zhí)⾏速度。
在每個迭代期,它⾸先隨機(jī)地將訓(xùn)練數(shù)據(jù)打亂,然后將它分成多個適當(dāng)⼤⼩的⼩批量數(shù)據(jù)。這是⼀個簡單的從訓(xùn)練數(shù)據(jù)的隨機(jī)采樣⽅法。然后對于每⼀個 mini_batch我們應(yīng)⽤⼀次梯度下降。這是通過代碼 self.update_mini_batch(mini_batch, eta) 完成的,它僅僅使⽤ mini_batch 中的訓(xùn)練數(shù)據(jù),根據(jù)單次梯度下降的迭代更新⽹絡(luò)的權(quán)重和偏置。這是update_mini_batch ⽅法的代碼:
def update_mini_batch(self, mini_batch, eta): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The "mini_batch" is a list of tuples "(x, y)", and "eta" is the learning rate.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backprop(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]
⼤部分⼯作由這⾏代碼完成:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
這⾏調(diào)⽤了⼀個稱為反向傳播的算法,⼀種快速計(jì)算代價函數(shù)的梯度的⽅法。因此update_mini_batch 的⼯作僅僅是對 mini_batch 中的每⼀個訓(xùn)練樣本計(jì)算梯度,然后適當(dāng)?shù)馗?self.weights 和 self.biases 。我現(xiàn)在不會列出 self.backprop 的代碼。我們將在下章中學(xué)習(xí)反向傳播是怎樣⼯作的,包括self.backprop 的代碼。現(xiàn)在,就假設(shè)它按照我們要求的⼯作,返回與訓(xùn)練樣本 x 相關(guān)代價的適當(dāng)梯度
完整的程序
""" network.py ~~~~~~~~~~ A module to implement the stochastic gradient descent learning algorithm for a feedforward neural network. Gradients are calculated using backpropagation. Note that I have focused on making the code simple, easily readable, and easily modifiable. It is not optimized, and omits many desirable features. """ #### Libraries # Standard library import random # Third-party libraries import numpy as np class Network(object): def __init__(self, sizes): """The list ``sizes`` contains the number of neurons in the respective layers of the network. For example, if the list was [2, 3, 1] then it would be a three-layer network, with the first layer containing 2 neurons, the second layer 3 neurons, and the third layer 1 neuron. The biases and weights for the network are initialized randomly, using a Gaussian distribution with mean 0, and variance 1. Note that the first layer is assumed to be an input layer, and by convention we won't set any biases for those neurons, since biases are only ever used in computing the outputs from later layers.""" self.num_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases, self.weights): a = sigmoid(np.dot(w, a)+b) return a def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): """Train the neural network using mini-batch stochastic gradient descent. The ``training_data`` is a list of tuples ``(x, y)`` representing the training inputs and the desired outputs. The other non-optional parameters are self-explanatory. If ``test_data`` is provided then the network will be evaluated against the test data after each epoch, and partial progress printed out. This is useful for tracking progress, but slows things down substantially.""" if test_data: n_test = len(test_data) n = len(training_data) for j in xrange(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in xrange(0, n, mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) if test_data: print "Epoch {0}: {1} / {2}".format( j, self.evaluate(test_data), n_test) else: print "Epoch {0} complete".format(j) def update_mini_batch(self, mini_batch, eta): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta`` is the learning rate.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] for x, y in mini_batch: delta_nabla_b, delta_nabla_w = self.backprop(x, y) nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)] nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)] self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] def backprop(self, x, y): """Return a tuple ``(nabla_b, nabla_w)`` representing the gradient for the cost function C_x. ``nabla_b`` and ``nabla_w`` are layer-by-layer lists of numpy arrays, similar to ``self.biases`` and ``self.weights``.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z = np.dot(w, activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) # backward pass delta = self.cost_derivative(activations[-1], y) * \ sigmoid_prime(zs[-1]) nabla_b[-1] = delta nabla_w[-1] = np.dot(delta, activations[-2].transpose()) # Note that the variable l in the loop below is used a little # differently to the notation in Chapter 2 of the book. Here, # l = 1 means the last layer of neurons, l = 2 is the # second-last layer, and so on. It's a renumbering of the # scheme in the book, used here to take advantage of the fact # that Python can use negative indices in lists. for l in xrange(2, self.num_layers): z = zs[-l] sp = sigmoid_prime(z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp nabla_b[-l] = delta nabla_w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla_b, nabla_w) def evaluate(self, test_data): """Return the number of test inputs for which the neural network outputs the correct result. Note that the neural network's output is assumed to be the index of whichever neuron in the final layer has the highest activation.""" test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data] return sum(int(x == y) for (x, y) in test_results) def cost_derivative(self, output_activations, y): """Return the vector of partial derivatives \partial C_x / \partial a for the output activations.""" return (output_activations-y) #### Miscellaneous functions def sigmoid(z): """The sigmoid function.""" return 1.0/(1.0+np.exp(-z)) def sigmoid_prime(z): """Derivative of the sigmoid function.""" return sigmoid(z)*(1-sigmoid(z))
""" mnist_loader ~~~~~~~~~~~~ A library to load the MNIST image data. For details of the data structures that are returned, see the doc strings for ``load_data`` and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the function usually called by our neural network code. """ #### Libraries # Standard library import cPickle import gzip # Third-party libraries import numpy as np def load_data(): """Return the MNIST data as a tuple containing the training data, the validation data, and the test data. The ``training_data`` is returned as a tuple with two entries. The first entry contains the actual training images. This is a numpy ndarray with 50,000 entries. Each entry is, in turn, a numpy ndarray with 784 values, representing the 28 * 28 = 784 pixels in a single MNIST image. The second entry in the ``training_data`` tuple is a numpy ndarray containing 50,000 entries. Those entries are just the digit values (0...9) for the corresponding images contained in the first entry of the tuple. The ``validation_data`` and ``test_data`` are similar, except each contains only 10,000 images. This is a nice data format, but for use in neural networks it's helpful to modify the format of the ``training_data`` a little. That's done in the wrapper function ``load_data_wrapper()``, see below. """ f = gzip.open('../data/mnist.pkl.gz', 'rb') training_data, validation_data, test_data = cPickle.load(f) f.close() return (training_data, validation_data, test_data) def load_data_wrapper(): """Return a tuple containing ``(training_data, validation_data, test_data)``. Based on ``load_data``, but the format is more convenient for use in our implementation of neural networks. In particular, ``training_data`` is a list containing 50,000 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray containing the input image. ``y`` is a 10-dimensional numpy.ndarray representing the unit vector corresponding to the correct digit for ``x``. ``validation_data`` and ``test_data`` are lists containing 10,000 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional numpy.ndarry containing the input image, and ``y`` is the corresponding classification, i.e., the digit values (integers) corresponding to ``x``. Obviously, this means we're using slightly different formats for the training data and the validation / test data. These formats turn out to be the most convenient for use in our neural network code.""" tr_d, va_d, te_d = load_data() training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]] training_results = [vectorized_result(y) for y in tr_d[1]] training_data = zip(training_inputs, training_results) validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]] validation_data = zip(validation_inputs, va_d[1]) test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]] test_data = zip(test_inputs, te_d[1]) return (training_data, validation_data, test_data) def vectorized_result(j): """Return a 10-dimensional unit vector with a 1.0 in the jth position and zeroes elsewhere. This is used to convert a digit (0...9) into a corresponding desired output from the neural network.""" e = np.zeros((10, 1)) e[j] = 1.0 return e
# test network.py "cost function square func" import mnist_loader training_data, validation_data, test_data = mnist_loader.load_data_wrapper() import network net = network.Network([784, 10]) net.SGD(training_data, 5, 10, 5.0, test_data=test_data)
原英文查看:http://neuralnetworksanddeeplearning.com/chap1.html
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
- 神經(jīng)網(wǎng)絡(luò)(BP)算法Python實(shí)現(xiàn)及應(yīng)用
- Python實(shí)現(xiàn)的三層BP神經(jīng)網(wǎng)絡(luò)算法示例
- Python編程實(shí)現(xiàn)的簡單神經(jīng)網(wǎng)絡(luò)算法示例
- python構(gòu)建深度神經(jīng)網(wǎng)絡(luò)(DNN)
- Python與人工神經(jīng)網(wǎng)絡(luò):使用神經(jīng)網(wǎng)絡(luò)識別手寫圖像介紹
- TensorFlow平臺下Python實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)
- Python實(shí)現(xiàn)的遞歸神經(jīng)網(wǎng)絡(luò)簡單示例
- Python利用邏輯回歸模型解決MNIST手寫數(shù)字識別問題詳解
- python讀取二進(jìn)制mnist實(shí)例詳解
- python MNIST手寫識別數(shù)據(jù)調(diào)用API的方法
- Python tensorflow實(shí)現(xiàn)mnist手寫數(shù)字識別示例【非卷積與卷積實(shí)現(xiàn)】
- Python利用全連接神經(jīng)網(wǎng)絡(luò)求解MNIST問題詳解
相關(guān)文章
詳解pandas如何去掉、過濾數(shù)據(jù)集中的某些值或者某些行?
這篇文章主要介紹了pandas如何去掉、過濾數(shù)據(jù)集中的某些值或者某些行?,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2019-05-05python GUI庫圖形界面開發(fā)之PyQt5滑塊條控件QSlider詳細(xì)使用方法與實(shí)例
這篇文章主要介紹了python GUI庫圖形界面開發(fā)之PyQt5滑塊條控件QSlider詳細(xì)使用方法與實(shí)例,需要的朋友可以參考下2020-02-02python-parser.parse_args()解析參數(shù)問題
這篇文章主要介紹了python-parser.parse_args()解析參數(shù)問題,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2023-08-08Python實(shí)現(xiàn)內(nèi)存泄露排查的示例詳解
一般在python代碼塊的調(diào)試過程中會使用memory-profiler、filprofiler、objgraph等三種方式進(jìn)行輔助分析,今天這里主要介紹使用objgraph對象提供的函數(shù)接口來進(jìn)行內(nèi)存泄露的分析,感興趣的可以了解一下2023-01-01python3實(shí)現(xiàn)微型的web服務(wù)器
這篇文章主要為大家詳細(xì)介紹了python3實(shí)現(xiàn)一個微型的web服務(wù)器,具有一定的參考價值,感興趣的小伙伴們可以參考一下2019-09-09