亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

基于數(shù)據(jù)歸一化以及Python實現(xiàn)方式

 更新時間:2018年07月11日 10:20:06   作者:迷茫的腳  
今天小編就為大家分享一篇基于數(shù)據(jù)歸一化以及Python實現(xiàn)方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

數(shù)據(jù)歸一化:

數(shù)據(jù)的標準化是將數(shù)據(jù)按比例縮放,使之落入一個小的特定區(qū)間,去除數(shù)據(jù)的單位限制,將其轉化為無量綱的純數(shù)值,便于不同單位或量級的指標能夠進行比較和加權。

為什么要做歸一化:

1)加快梯度下降求最優(yōu)解的速度

如果兩個特征的區(qū)間相差非常大,其所形成的等高線非常尖,很有可能走“之字型”路線(垂直等高線走),從而導致需要迭代很多次才能收斂。

2)有可能提高精度

一些分類器需要計算樣本之間的距離,如果一個特征值域范圍非常大,那么距離計算就主要取決于這個特征,從而與實際情況相悖(比如這時實際情況是值域范圍小的特征更重要)。

歸一化類型

1)線性歸一化

這種歸一化比較適用在數(shù)值比較集中的情況,缺陷就是如果max和min不穩(wěn)定,很容易使得歸一化結果不穩(wěn)定,使得后續(xù)的效果不穩(wěn)定,實際使用中可以用經(jīng)驗常量來代替max和min。

2)標準差標準化

經(jīng)過處理的數(shù)據(jù)符合標準正態(tài)分布,即均值為0,標準差為1。

3)非線性歸一化

經(jīng)常用在數(shù)據(jù)分化較大的場景,有些數(shù)值大,有些很小。通過一些數(shù)學函數(shù),將原始值進行映射。該方法包括log、指數(shù)、反正切等。需要根據(jù)數(shù)據(jù)分布的情況,決定非線性函數(shù)的曲線。

log函數(shù):x = lg(x)/lg(max)

反正切函數(shù):x = atan(x)*2/pi

Python實現(xiàn)

線性歸一化

定義數(shù)組:x = numpy.array(x)

獲取二維數(shù)組列方向的最大值:x.max(axis = 0)

獲取二維數(shù)組列方向的最小值:x.min(axis = 0)

對二維數(shù)組進行線性歸一化:

def max_min_normalization(data_value, data_col_max_values, data_col_min_values):
""" Data normalization using max value and min value

Args:
 data_value: The data to be normalized
 data_col_max_values: The maximum value of data's columns
 data_col_min_values: The minimum value of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):
 for j in xrange(0, data_cols, 1):
  data_value[i][j] = \
   (data_value[i][j] - data_col_min_values[j]) / \
   (data_col_max_values[j] - data_col_min_values[j])

標準差歸一化

定義數(shù)組:x = numpy.array(x)

獲取二維數(shù)組列方向的均值:x.mean(axis = 0)

獲取二維數(shù)組列方向的標準差:x.std(axis = 0)

對二維數(shù)組進行標準差歸一化:

def standard_deviation_normalization(data_value, data_col_means,
         data_col_standard_deviation):
""" Data normalization using standard deviation

Args:
 data_value: The data to be normalized
 data_col_means: The means of data's columns
 data_col_standard_deviation: The variance of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):
 for j in xrange(0, data_cols, 1):
  data_value[i][j] = \
   (data_value[i][j] - data_col_means[j]) / \
   data_col_standard_deviation[j]

非線性歸一化(以lg為例)

定義數(shù)組:x = numpy.array(x)

獲取二維數(shù)組列方向的最大值:x.max(axis=0)

獲取二維數(shù)組每個元素的lg值:numpy.log10(x)

獲取二維數(shù)組列方向的最大值的lg值:numpy.log10(x.max(axis=0))

對二維數(shù)組使用lg進行非線性歸一化:

def nonlinearity_normalization_lg(data_value_after_lg,
        data_col_max_values_after_lg):
""" Data normalization using lg

Args:
 data_value_after_lg: The data to be normalized
 data_col_max_values_after_lg: The maximum value of data's columns
"""

data_shape = data_value_after_lg.shape
data_rows = data_shape[0]
data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):
 for j in xrange(0, data_cols, 1):
  data_value_after_lg[i][j] = \
   data_value_after_lg[i][j] / data_col_max_values_after_lg[j]

以上這篇基于數(shù)據(jù)歸一化以及Python實現(xiàn)方式就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關文章

最新評論