亚洲乱码中文字幕综合,中国熟女仑乱hd,亚洲精品乱拍国产一区二区三区,一本大道卡一卡二卡三乱码全集资源,又粗又黄又硬又爽的免费视频

tensorflow實(shí)現(xiàn)KNN識(shí)別MNIST

 更新時(shí)間:2018年03月12日 14:15:19   作者:freedom098  
這篇文章主要為大家詳細(xì)介紹了tensorflow實(shí)現(xiàn)KNN識(shí)別MNIST,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下

KNN算法算是最簡單的機(jī)器學(xué)習(xí)算法之一了,這個(gè)算法最大的特點(diǎn)是沒有訓(xùn)練過程,是一種懶惰學(xué)習(xí),這種結(jié)構(gòu)也可以在tensorflow實(shí)現(xiàn)。

KNN的最核心就是距離度量方式,官方例程給出的是L1范數(shù)的例子,我這里改成了L2范數(shù),也就是我們常說的歐幾里得距離度量,另外,雖然是叫KNN,意思是選取k個(gè)最接近的元素來投票產(chǎn)生分類,但是這里只是用了最近的那個(gè)數(shù)據(jù)的標(biāo)簽作為預(yù)測值了。

__author__ = 'freedom' 
import tensorflow as tf 
import numpy as np 
 
def loadMNIST(): 
 from tensorflow.examples.tutorials.mnist import input_data 
 mnist = input_data.read_data_sets('MNIST_data',one_hot=True) 
 return mnist 
def KNN(mnist): 
 train_x,train_y = mnist.train.next_batch(5000) 
 test_x,test_y = mnist.train.next_batch(200) 
 
 xtr = tf.placeholder(tf.float32,[None,784]) 
 xte = tf.placeholder(tf.float32,[784]) 
 distance = tf.sqrt(tf.reduce_sum(tf.pow(tf.add(xtr,tf.neg(xte)),2),reduction_indices=1)) 
 
 pred = tf.argmin(distance,0) 
 
 init = tf.initialize_all_variables() 
 
 sess = tf.Session() 
 sess.run(init) 
 
 right = 0 
 for i in range(200): 
  ansIndex = sess.run(pred,{xtr:train_x,xte:test_x[i,:]}) 
  print 'prediction is ',np.argmax(train_y[ansIndex]) 
  print 'true value is ',np.argmax(test_y[i]) 
  if np.argmax(test_y[i]) == np.argmax(train_y[ansIndex]): 
   right += 1.0 
 accracy = right/200.0 
 print accracy 
 
if __name__ == "__main__": 
 mnist = loadMNIST() 
 KNN(mnist) 

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

最新評論