使用python和pygame繪制繁花曲線的方法
前段時間看了一期《最強大腦》,里面各種繁花曲線組合成了非常美麗的圖形,一時心血來潮,想嘗試自己用代碼繪制繁花曲線,想怎么組合就怎么組合。
真實的繁花曲線使用一種稱為繁花曲線規(guī)的小玩意繪制,繁花曲線規(guī)由相互契合大小兩個圓組成,用筆插在小圓上的一個孔中,緊貼大圓的內(nèi)壁滾動,就可以繪制出漂亮的圖案。這個過程可以做一個抽象:有兩個半徑不相等的圓,大圓位置固定,小圓在大圓內(nèi)部,小圓緊貼著大圓內(nèi)壁滾動,求小圓上的某一點走過的軌跡。
進一步分析,小圓的運動可以分解為兩個部分:小圓圓心繞大圓圓心公轉(zhuǎn)、小圓繞自身圓心自轉(zhuǎn)。設(shè)大圓圓心為A,半徑為Ra,小圓圓心為B,半徑為Rb,軌跡點為C,半徑為Rc(BC距離),設(shè)小圓公轉(zhuǎn)的弧度為θ [0,∞),如圖:

因為大圓的圓心坐標(biāo)是固定的,要求得小圓上的某點的軌跡,需要先求出小圓當(dāng)前時刻的圓心坐標(biāo),再求出小圓自轉(zhuǎn)的弧度,最后求出小圓上某點的坐標(biāo)。
第一步:求小圓圓心坐標(biāo)
小圓圓心的公轉(zhuǎn)軌跡是一個半徑為 RA- RB 的圓,求小圓圓心坐標(biāo),相當(dāng)于是求半徑為 RA- RB 的圓上θ 弧度對應(yīng)的點的坐標(biāo)。
圓上的點的坐標(biāo)公式為:
x = r * cos(θ), y = r * sin(θ)
小圓圓心坐標(biāo)為:( xa+ (Ra - Rb) * cos(θ), ya + (Ra - Rb) * sin(θ) )
第二步:求小圓自轉(zhuǎn)弧度
設(shè)小圓自轉(zhuǎn)弧度為α,小圓緊貼大圓運動,兩者走過的路程相同,因此有:
Ra *θ = Rb *α
小圓自轉(zhuǎn)弧度α = (Ra / Rb) *θ
第三步:求點C坐標(biāo)
點C相對小圓圓心B的公轉(zhuǎn)軌跡是一個半徑為 Rc 的圓,類似第一步,有:
軌跡點C的坐標(biāo)為:( xa+ Rc* cos(θ), ya+ Rc* sin(θ))
按照以上算法分析,用python代碼實現(xiàn)如下:
# -*- coding: utf-8 -*- import math ''' 功能: 已知圓的圓心和半徑,獲取某弧度對應(yīng)的圓上點的坐標(biāo) 入?yún)ⅲ? center:圓心 radius:半徑 radian:弧度 ''' def get_point_in_circle(center, radius, radian): return (center[0] + radius * math.cos(radian), center[1] - radius * math.sin(radian)) ''' 功能: 內(nèi)外圓A和B,內(nèi)圓A沿著外圓B的內(nèi)圈滾動,已知外圓圓心、半徑,已知內(nèi)圓半徑,已知公轉(zhuǎn)弧度和繞點半徑,計算繞點坐標(biāo) 入?yún)ⅲ? center_A:外圓圓心 radius_A:外圓半徑 radius_B:內(nèi)圓半徑 radius_C:繞點半徑 radian:公轉(zhuǎn)弧度 ''' def get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, radian): # 計算內(nèi)圓圓心坐標(biāo) center_B = get_point_in_circle(center_A, radius_A - radius_B, radian) # 計算繞點弧度(公轉(zhuǎn)為逆時針,則自轉(zhuǎn)為順時針) radian_C = 2.0*math.pi - ((radius_A / radius_B * radian) % (2.0*math.pi)) # 計算繞點坐標(biāo) return get_point_in_circle(center_B, radius_C, radian_C)
有兩點需要注意:
(1)屏幕坐標(biāo)系左上角為原點,垂直向下為Y正軸,與數(shù)學(xué)坐標(biāo)系Y軸方向相反,所以第14行Y坐標(biāo)為減法;
(2)默認公轉(zhuǎn)為逆時針,則自轉(zhuǎn)為順時針,所以第30行求自轉(zhuǎn)弧度時,使用了2π - α%(2π);
坐標(biāo)已經(jīng)計算出來,接下來使用pygame繪制。思想是以0.01弧度為一個步長,不斷計算出新的坐標(biāo),把一系列坐標(biāo)連起來就會形成軌跡圖。
為了能夠形成一個封閉圖形,還需要知道繪制點什么時候會重新回到起點。想了一個辦法,以X軸正半軸為基準(zhǔn)線,每次繪制點到達基準(zhǔn)線,計算此時繪制點與起點的距離,達到一定精度認為已經(jīng)回到起點,形成封閉圖形。
''' 計算兩點距離(平方和) '''
def get_instance(p1, p2):
return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1])
'''
功能:
獲取繞點路徑的所有點的坐標(biāo)
入?yún)ⅲ?
center:外圓圓心
radius_A:外圓半徑
radius_B:內(nèi)圓半徑
radius_C:繞點半徑
shift_radian:每次偏移的弧度,默認0.01,值越小,精度越高,計算量越大
'''
def get_points(center, radius_A, radius_B, radius_C, shift_radian=0.01):
# 轉(zhuǎn)為實數(shù)
radius_A *= 1.0
radius_B *= 1.0
radius_C *= 1.0
P2 = 2*math.pi # 一圈的弧度為 2PI
R_PER_ROUND = int(P2/shift_radian/4) + 1 # 一圈需要走多少步(弧度偏移多少次)
# 第一圈的起點坐標(biāo)
start_point = get_point_in_child_circle(center, radius_A, radius_B, radius_C, 0)
points = [start_point]
# 第一圈的路徑坐標(biāo)
for r in range(1, R_PER_ROUND):
points.append(get_point_in_child_circle(center, radius_A, radius_B, radius_C, shift_radian*r))
# 以圈為單位,每圈的起始弧度為 2PI*round,某圈的起點坐標(biāo)與第一圈的起點坐標(biāo)距離在一定范圍內(nèi),認為路徑結(jié)束
for round in range(1, 100):
s_radian = round*P2
s_point = get_point_in_child_circle(center, radius_A, radius_B, radius_C, s_radian)
if get_instance(s_point, start_point) < 0.1:
break
points.append(s_point)
for r in range(1, R_PER_ROUND):
points.append(get_point_in_child_circle(center, radius_A, radius_B, radius_C, s_radian + shift_radian*r))
return points
再加上繪制代碼,完整代碼如下:
# -*- coding: utf-8 -*-
import math
import random
'''
功能:
已知圓的圓心和半徑,獲取某弧度對應(yīng)的圓上點的坐標(biāo)
入?yún)ⅲ?
center:圓心
radius:半徑
radian:弧度
'''
def get_point_in_circle(center, radius, radian):
return (center[0] + radius * math.cos(radian), center[1] - radius * math.sin(radian))
'''
功能:
內(nèi)外圓A和B,內(nèi)圓A沿著外圓B的內(nèi)圈滾動,已知外圓圓心、半徑,已知內(nèi)圓半徑、公轉(zhuǎn)弧度,已知繞點半徑,計算繞點坐標(biāo)
入?yún)ⅲ?
center_A:外圓圓心
radius_A:外圓半徑
radius_B:內(nèi)圓半徑
radius_C:繞點半徑
radian:公轉(zhuǎn)弧度
'''
def get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, radian):
# 計算內(nèi)圓圓心坐標(biāo)
center_B = get_point_in_circle(center_A, radius_A - radius_B, radian)
# 計算繞點弧度(公轉(zhuǎn)為逆時針,則自轉(zhuǎn)為順時針)
radian_C = 2.0*math.pi - ((radius_A / radius_B * radian) % (2.0*math.pi))
# 計算繞點坐標(biāo)
center_C = get_point_in_circle(center_B, radius_C, radian_C)
center_B_Int = (int(center_B[0]), int(center_B[1]))
return center_B_Int, center_C
''' 計算兩點距離(平方和) '''
def get_instance(p1, p2):
return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1])
'''
功能:
獲取繞點路徑的所有點的坐標(biāo)
入?yún)ⅲ?
center:外圓圓心
radius_A:外圓半徑
radius_B:內(nèi)圓半徑
radius_C:繞點半徑
shift_radian:每次偏移的弧度,默認0.01,值越小,精度越高,計算量越大
'''
def get_points(center_A, radius_A, radius_B, radius_C, shift_radian=0.01):
# 轉(zhuǎn)為實數(shù)
radius_A *= 1.0
radius_B *= 1.0
radius_C *= 1.0
P2 = 2*math.pi # 一圈的弧度為 2PI
R_PER_ROUND = int(P2/shift_radian) + 1 # 一圈需要走多少步(弧度偏移多少次)
# 第一圈的起點坐標(biāo)
start_center, start_point = get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, 0)
points = [start_point]
centers = [start_center]
# 第一圈的路徑坐標(biāo)
for r in range(1, R_PER_ROUND):
center, point = get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, shift_radian*r)
points.append(point)
centers.append(center)
# 以圈為單位,每圈的起始弧度為 2PI*round,某圈的起點坐標(biāo)與第一圈的起點坐標(biāo)距離在一定范圍內(nèi),認為路徑結(jié)束
for round in range(1, 100):
s_radian = round*P2
s_center, s_point = get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, s_radian)
if get_instance(s_point, start_point) < 0.1:
break
points.append(s_point)
centers.append(s_center)
for r in range(1, R_PER_ROUND):
center, point = get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, s_radian + shift_radian*r)
points.append(point)
centers.append(center)
print(len(points)/R_PER_ROUND)
return centers, points
import pygame
from pygame.locals import *
pygame.init()
screen = pygame.display.set_mode((600, 400))
clock = pygame.time.Clock()
color_black = (0, 0, 0)
color_white = (255, 255, 255)
color_red = (255, 0, 0)
color_yello = (255, 255, 0)
center = (300, 200)
radius_A = 150
radius_B = 110
radius_C = 50
test_centers, test_points = get_points(center, radius_A, radius_B, radius_C)
test_idx = 2
draw_point_num_per_tti = 5
while True:
for event in pygame.event.get():
if event.type==pygame.QUIT:
pygame.quit()
exit(0)
screen.fill(color_white)
pygame.draw.circle(screen, color_black, center, int(radius_A), 2)
if test_idx <= len(test_points):
pygame.draw.aalines(screen, (0, 0, 255), False, test_points[:test_idx], 1)
if test_idx < len(test_centers):
pygame.draw.circle(screen, color_black, test_centers[test_idx], int(radius_B), 1)
pygame.draw.aaline(screen, color_black, test_centers[test_idx], test_points[test_idx], 1)
test_idx = min(test_idx + draw_point_num_per_tti, len(test_points))
clock.tick(50)
pygame.display.flip()
效果:

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
tkinter動態(tài)顯示時間的兩種實現(xiàn)方法
這篇文章主要介紹了tkinter動態(tài)顯示時間的兩種實現(xiàn)方法,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-01-01
分享Pandas庫中的一些寶藏函數(shù)transform()
Pandas具有很多強大的功能,transform就是其中之一,利用它可以高效地匯總數(shù)據(jù)且不改變數(shù)據(jù)行數(shù),transform是一種什么數(shù)據(jù)操作?如果熟悉SQL的窗口函數(shù),就非常容易理解了2021-09-09
Python編程itertools模塊處理可迭代集合相關(guān)函數(shù)
本篇博客將為你介紹Python函數(shù)式編程itertools模塊中處理可迭代集合的相關(guān)函數(shù),有需要的朋友可以借鑒參考下,希望可以有所幫助2021-09-09
詳解Python logging調(diào)用Logger.info方法的處理過程
這篇文章主要介紹了詳解Python logging調(diào)用Logger.info方法的處理過程,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2019-02-02
Python從數(shù)據(jù)庫讀取大量數(shù)據(jù)批量寫入文件的方法
今天小編就為大家分享一篇Python從數(shù)據(jù)庫讀取大量數(shù)據(jù)批量寫入文件的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-12-12
快速掌握python權(quán)限功能設(shè)計實戰(zhàn)指南
在處理權(quán)限控制時,裝飾器能幫助我們以一種統(tǒng)一且簡潔的方式管理不同用戶對系統(tǒng)資源的訪問權(quán)限,本文將通過幾個簡單的示例逐步展示如何利用Python裝飾器實現(xiàn)從基礎(chǔ)到復(fù)雜的權(quán)限控制功能2024-01-01

