Python實現(xiàn)k-means算法
本文實例為大家分享了Python實現(xiàn)k-means算法的具體代碼,供大家參考,具體內(nèi)容如下
這也是周志華《機器學(xué)習(xí)》的習(xí)題9.4。
數(shù)據(jù)集是西瓜數(shù)據(jù)集4.0,如下
編號,密度,含糖率
1,0.697,0.46
2,0.774,0.376
3,0.634,0.264
4,0.608,0.318
5,0.556,0.215
6,0.403,0.237
7,0.481,0.149
8,0.437,0.211
9,0.666,0.091
10,0.243,0.267
11,0.245,0.057
12,0.343,0.099
13,0.639,0.161
14,0.657,0.198
15,0.36,0.37
16,0.593,0.042
17,0.719,0.103
18,0.359,0.188
19,0.339,0.241
20,0.282,0.257
21,0.784,0.232
22,0.714,0.346
23,0.483,0.312
24,0.478,0.437
25,0.525,0.369
26,0.751,0.489
27,0.532,0.472
28,0.473,0.376
29,0.725,0.445
30,0.446,0.459
算法很簡單,就不解釋了,代碼也不復(fù)雜,直接放上來:
# -*- coding: utf-8 -*- """Excercise 9.4""" import numpy as np import pandas as pd import matplotlib.pyplot as plt import sys import random data = pd.read_csv(filepath_or_buffer = '../dataset/watermelon4.0.csv', sep = ',')[["密度","含糖率"]].values ########################################## K-means ####################################### k = int(sys.argv[1]) #Randomly choose k samples from data as mean vectors mean_vectors = random.sample(data,k) def dist(p1,p2): return np.sqrt(sum((p1-p2)*(p1-p2))) while True: print mean_vectors clusters = map ((lambda x:[x]), mean_vectors) for sample in data: distances = map((lambda m: dist(sample,m)), mean_vectors) min_index = distances.index(min(distances)) clusters[min_index].append(sample) new_mean_vectors = [] for c,v in zip(clusters,mean_vectors): new_mean_vector = sum(c)/len(c) #If the difference betweenthe new mean vector and the old mean vector is less than 0.0001 #then do not updata the mean vector if all(np.divide((new_mean_vector-v),v) < np.array([0.0001,0.0001]) ): new_mean_vectors.append(v) else: new_mean_vectors.append(new_mean_vector) if np.array_equal(mean_vectors,new_mean_vectors): break else: mean_vectors = new_mean_vectors #Show the clustering result total_colors = ['r','y','g','b','c','m','k'] colors = random.sample(total_colors,k) for cluster,color in zip(clusters,colors): density = map(lambda arr:arr[0],cluster) sugar_content = map(lambda arr:arr[1],cluster) plt.scatter(density,sugar_content,c = color) plt.show()
運行方式:在命令行輸入 python k_means.py 4。其中4就是k。
下面是k分別等于3,4,5的運行結(jié)果,因為一開始的均值向量是隨機的,所以每次運行結(jié)果會有不同。
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
python+selenium+PhantomJS抓取網(wǎng)頁動態(tài)加載內(nèi)容
一般我們使用python的第三方庫requests及框架scrapy來爬取網(wǎng)上的資源,但是設(shè)計javascript渲染的頁面卻不能抓取,此 時,我們使用web自動化測試化工具Selenium+無界面瀏覽器PhantomJS來抓取javascript渲染的頁面,下面實現(xiàn)一個簡單的爬取2020-02-02Python3 + Appium + 安卓模擬器實現(xiàn)APP自動化測試并生成測試報告
這篇文章主要介紹了Python3 + Appium + 安卓模擬器實現(xiàn)APP自動化測試并生成測試報告,本文給大家介紹的非常詳細,對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2021-01-01Python Pandas模塊實現(xiàn)數(shù)據(jù)的統(tǒng)計分析的方法
在上一篇講了幾個常用的“Pandas”函數(shù)之后,今天小編就為大家介紹一下在數(shù)據(jù)統(tǒng)計分析當中經(jīng)常用到的“Pandas”函數(shù)方法,希望能對大家有所收獲,需要的朋友可以參考下2021-06-06