python+matplotlib繪制簡單的海豚(頂點(diǎn)和節(jié)點(diǎn)的操作)
海豚
本文例子主要展示了如何使用補(bǔ)丁、路徑和轉(zhuǎn)換類繪制和操作給定的頂點(diǎn)和節(jié)點(diǎn)的形狀。
測試可用。
import matplotlib.cm as cm import matplotlib.pyplot as plt from matplotlib.patches import Circle, PathPatch from matplotlib.path import Path from matplotlib.transforms import Affine2D import numpy as np # Fixing random state for reproducibility np.random.seed(19680801) r = np.random.rand(50) t = np.random.rand(50) * np.pi * 2.0 x = r * np.cos(t) y = r * np.sin(t) fig, ax = plt.subplots(figsize=(6, 6)) circle = Circle((0, 0), 1, facecolor='none', edgecolor=(0, 0.8, 0.8), linewidth=3, alpha=0.5) ax.add_patch(circle) im = plt.imshow(np.random.random((100, 100)), origin='lower', cmap=cm.winter, interpolation='spline36', extent=([-1, 1, -1, 1])) im.set_clip_path(circle) plt.plot(x, y, 'o', color=(0.9, 0.9, 1.0), alpha=0.8) # Dolphin from OpenClipart library by Andy Fitzsimon # <cc:License rdf:about="http://web.resource.org/cc/PublicDomain"> # <cc:permits rdf:resource="http://web.resource.org/cc/Reproduction"/> # <cc:permits rdf:resource="http://web.resource.org/cc/Distribution"/> # <cc:permits rdf:resource="http://web.resource.org/cc/DerivativeWorks"/> # </cc:License> dolphin = """ M -0.59739425,160.18173 C -0.62740401,160.18885 -0.57867129,160.11183 -0.57867129,160.11183 C -0.57867129,160.11183 -0.5438361,159.89315 -0.39514638,159.81496 C -0.24645668,159.73678 -0.18316813,159.71981 -0.18316813,159.71981 C -0.18316813,159.71981 -0.10322971,159.58124 -0.057804323,159.58725 C -0.029723983,159.58913 -0.061841603,159.60356 -0.071265813,159.62815 C -0.080250183,159.65325 -0.082918513,159.70554 -0.061841203,159.71248 C -0.040763903,159.7194 -0.0066711426,159.71091 0.077336307,159.73612 C 0.16879567,159.76377 0.28380306,159.86448 0.31516668,159.91533 C 0.3465303,159.96618 0.5011127,160.1771 0.5011127,160.1771 C 0.63668998,160.19238 0.67763022,160.31259 0.66556395,160.32668 C 0.65339985,160.34212 0.66350443,160.33642 0.64907098,160.33088 C 0.63463742,160.32533 0.61309688,160.297 0.5789627,160.29339 C 0.54348657,160.28968 0.52329693,160.27674 0.50728856,160.27737 C 0.49060916,160.27795 0.48965803,160.31565 0.46114204,160.33673 C 0.43329696,160.35786 0.4570711,160.39871 0.43309565,160.40685 C 0.4105108,160.41442 0.39416631,160.33027 0.3954995,160.2935 C 0.39683269,160.25672 0.43807996,160.21522 0.44567915,160.19734 C 0.45327833,160.17946 0.27946869,159.9424 -0.061852613,159.99845 C -0.083965233,160.0427 -0.26176109,160.06683 -0.26176109,160.06683 C -0.30127962,160.07028 -0.21167141,160.09731 -0.24649368,160.1011 C -0.32642366,160.11569 -0.34521187,160.06895 -0.40622293,160.0819 C -0.467234,160.09485 -0.56738444,160.17461 -0.59739425,160.18173 """ vertices = [] codes = [] parts = dolphin.split() i = 0 code_map = { 'M': (Path.MOVETO, 1), 'C': (Path.CURVE4, 3), 'L': (Path.LINETO, 1)} while i < len(parts): code = parts[i] path_code, npoints = code_map[code] codes.extend([path_code] * npoints) vertices.extend([[float(x) for x in y.split(',')] for y in parts[i + 1:i + npoints + 1]]) i += npoints + 1 vertices = np.array(vertices, float) vertices[:, 1] -= 160 dolphin_path = Path(vertices, codes) dolphin_patch = PathPatch(dolphin_path, facecolor=(0.6, 0.6, 0.6), edgecolor=(0.0, 0.0, 0.0)) ax.add_patch(dolphin_patch) vertices = Affine2D().rotate_deg(60).transform(vertices) dolphin_path2 = Path(vertices, codes) dolphin_patch2 = PathPatch(dolphin_path2, facecolor=(0.5, 0.5, 0.5), edgecolor=(0.0, 0.0, 0.0)) ax.add_patch(dolphin_patch2) plt.show()
效果如下:
總結(jié)
以上就是本文關(guān)于python+matplotlib繪制簡單的海豚(頂點(diǎn)和節(jié)點(diǎn)的操作)的全部內(nèi)容,希望對大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站其他相關(guān)專題,如有不足之處,歡迎留言指出。感謝朋友們對本站的支持!
- Python實(shí)現(xiàn)針對給定單鏈表刪除指定節(jié)點(diǎn)的方法
- Python基于lxml模塊解析html獲取頁面內(nèi)所有葉子節(jié)點(diǎn)xpath路徑功能示例
- python 通過xml獲取測試節(jié)點(diǎn)和屬性的實(shí)例
- Python算法之求n個(gè)節(jié)點(diǎn)不同二叉樹個(gè)數(shù)
- python xml.etree.ElementTree遍歷xml所有節(jié)點(diǎn)實(shí)例詳解
- Python selenium 父子、兄弟、相鄰節(jié)點(diǎn)定位方式詳解
- Python獲取任意xml節(jié)點(diǎn)值的方法
- python實(shí)現(xiàn)單鏈表中刪除倒數(shù)第K個(gè)節(jié)點(diǎn)的方法
相關(guān)文章
Python算術(shù)運(yùn)算符實(shí)例詳解
這篇文章主要介紹了Python算術(shù)運(yùn)算符實(shí)例詳解的相關(guān)資料,需要的朋友可以參考下2017-05-05關(guān)于Python中的 oct 函數(shù)與 min 函數(shù)
本文主要介紹了Python oct 函數(shù)與 min 函數(shù);oct 函數(shù)是 Python 內(nèi)置函數(shù),主要將一個(gè)整數(shù)轉(zhuǎn)為八進(jìn)制,與 ord 函數(shù) / chr 函數(shù) 有點(diǎn)類似;min 函數(shù)返回給定參數(shù)的最小值,參數(shù)可以為序列語法,感興趣的小伙伴請繼續(xù)閱讀下文2021-09-09詳解基于django實(shí)現(xiàn)的webssh簡單例子
這篇文章主要介紹了基于 django 實(shí)現(xiàn)的 webssh 簡單例子,小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,也給大家做個(gè)參考。一起跟隨小編過來看看吧2018-07-07pytorch中torch.stack()函數(shù)用法解讀
這篇文章主要介紹了pytorch中torch.stack()函數(shù)用法,具有很好的參考價(jià)值,希望對大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2024-04-04NumPy中np.c_ 和 np.r_ 的區(qū)別小結(jié)
np.c_和?np.r_是NumPy庫中兩個(gè)非常有用的函數(shù),它們分別用于按列和按行拼接數(shù)組本文主要介紹了NumPy中np.c_ 和 np.r_ 的區(qū)別小結(jié),具有一定的參考價(jià)值,感興趣的可以了解一下2024-02-02Python中通過property設(shè)置類屬性的訪問
為了達(dá)到類似C++類的封裝性能,可以使用property來設(shè)置Python類屬性的訪問權(quán)限,本文就介紹一下Python中通過property設(shè)置類屬性的訪問,感興趣的可以了解一下,感興趣的可以了解一下2023-09-09