Python用戶推薦系統(tǒng)曼哈頓算法實現(xiàn)完整代碼
出租車幾何或曼哈頓距離(Manhattan Distance)是由十九世紀的赫爾曼·閔可夫斯基所創(chuàng)詞匯 ,是種使用在幾何度量空間的幾何學(xué)用語,用以標明兩個點在標準坐標系上的絕對軸距總和。
圖中紅線代表曼哈頓距離,綠色代表歐氏距離,也就是直線距離,而藍色和黃色代表等價的曼哈頓距離。曼哈頓距離——兩點在南北方向上的距離加上在東西方向上的距離,即d(i,j)=|xi-xj|+|yi-yj|。對于一個具有正南正北、正東正西方向規(guī)則布局的城鎮(zhèn)街道,從一點到達另一點的距離正是在南北方向上旅行的距離加上在東西方向上旅行的距離,因此,曼哈頓距離又稱為出租車距離。曼哈頓距離不是距離不變量,當坐標軸變動時,點間的距離就會不同。曼哈頓距離示意圖在早期的計算機圖形學(xué)中,屏幕是由像素構(gòu)成,是整數(shù),點的坐標也一般是整數(shù),原因是浮點運算很昂貴,很慢而且有誤差,如果直接使用AB的歐氏距離(歐幾里德距離:在二維和三維空間中的歐氏距離的就是兩點之間的距離),則必須要進行浮點運算,如果使用AC和CB,則只要計算加減法即可,這就大大提高了運算速度,而且不管累計運算多少次,都不會有誤差。
Python用戶推薦系統(tǒng)曼哈頓算法實現(xiàn)
#-*- coding: utf-8 -*- import codecs from math import sqrt users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, "Norah Jones": 4.5, "Phoenix": 5.0, "Slightly Stoopid": 1.5, "The Strokes": 2.5, "Vampire Weekend": 2.0}, "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5, "Deadmau5": 4.0, "Phoenix": 2.0, "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0}, "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0, "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5, "Slightly Stoopid": 1.0}, "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0, "Deadmau5": 4.5, "Phoenix": 3.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 2.0}, "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0, "Norah Jones": 4.0, "The Strokes": 4.0, "Vampire Weekend": 1.0}, "Jordyn": {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, "Phoenix": 5.0, "Slightly Stoopid": 4.5, "The Strokes": 4.0, "Vampire Weekend": 4.0}, "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0, "Norah Jones": 3.0, "Phoenix": 5.0, "Slightly Stoopid": 4.0, "The Strokes": 5.0}, "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0, "Slightly Stoopid": 2.5, "The Strokes": 3.0} } # Python計算曼哈頓距離 www.iplaypy.com def manhattan(rate1,rate2): distance = 0 commonRating = False for key in rate1: if key in rate2: distance+=abs(rate1[key]-rate2[key]) commonRating=True if commonRating: return distance else: return -1 # python返回最近距離用戶 def computeNearestNeighbor(username,users): distances = [] for key in users: if key<>username: distance = manhattan(users[username],users[key]) distances.append((distance,key)) distances.sort() return distances #推薦python實現(xiàn) def recommend(username,users): #獲得最近用戶的name nearest = computeNearestNeighbor(username,users)[0][1] recommendations =[] #得到最近用戶的推薦列表 neighborRatings = users[nearest] for key in neighborRatings: if not key in users[username]: recommendations.append((key,neighborRatings[key])) recommendations.sort(key=lambda rat:rat[1], reverse=True) return recommendations if __name__ == '__main__': print recommend('Hailey', users)
總結(jié)
以上就是本文關(guān)于Python用戶推薦系統(tǒng)曼哈頓算法實現(xiàn)完整代碼的全部內(nèi)容,希望對大家有所幫助。感興趣的朋友可以繼續(xù)參閱本站其他相關(guān)專題,如有不足之處,歡迎留言指出。感謝朋友們對本站的支持!
相關(guān)文章
django框架使用orm實現(xiàn)批量更新數(shù)據(jù)的方法
這篇文章主要介紹了django框架使用orm實現(xiàn)批量更新數(shù)據(jù)的方法,結(jié)合實例形式簡單分析了Django基于orm操作數(shù)據(jù)庫更新數(shù)據(jù)的相關(guān)實現(xiàn)技巧,需要的朋友可以參考下2019-06-06