通過先序遍歷和中序遍歷后的序列還原二叉樹(實現(xiàn)方法)
當(dāng)我們有一個
先序遍歷序列:1,3,7,9,5,11
中序遍歷序列:9,7,3,1,5,11
我們可以很輕松的用筆寫出對應(yīng)的二叉樹。但是用代碼又該如何實現(xiàn)?
下面我們來簡單談?wù)劵舅枷搿?/p>
首先,先序遍歷的順序是根據(jù) 根-左孩子-右孩子 的順序遍歷的,那么我們可以率先確認(rèn)的是先序遍歷序列的第一個數(shù)就是根節(jié)點,然后中序遍歷是根據(jù) 左孩子-根-右孩子 的順序遍歷的。我們通過先序遍歷確認(rèn)了根節(jié)點,那么我們只需要在中序遍歷中找到根節(jié)點的位置,然后就可以很好地區(qū)分出,那些屬于左子樹的節(jié)點,那些是屬于右子樹的節(jié)點了。如下圖:
我們確定數(shù)字1為根節(jié)點,然后根據(jù)中序遍歷的遍歷順序確定,中序遍歷序列中數(shù)字1的左邊全部為左子樹節(jié)點,右邊全部為右子樹。通過左子樹節(jié)點的個數(shù),得出先序遍歷序列中從根節(jié)點往后的連續(xù)3個數(shù)是屬于左子樹的,剩下的為右子樹。這樣再在左右子樹的序列中重復(fù)以上步驟,最終找到?jīng)]有子節(jié)點為止。
實現(xiàn)代碼如下:
package com.tree.traverse; import java.util.ArrayList; import java.util.List; /** * @author Caijh * * 2017年6月2日 下午7:21:10 */ public class BuildTreePreOrderInOrder { /** * 1 * / \ * 3 5 * / \ * 7 11 * / * 9 */ public static int treeNode = 0;//記錄先序遍歷節(jié)點的個數(shù) private List<Node> nodeList = new ArrayList<>();//層次遍歷節(jié)點的隊列 public static void main(String[] args) { BuildTreePreOrderInOrder build = new BuildTreePreOrderInOrder(); int[] preOrder = { 1, 3, 7, 9, 5, 11}; int[] inOrder = { 9, 7, 3, 1, 5, 11}; treeNode = preOrder.length;//初始化二叉樹的節(jié)點數(shù) Node root = build.buildTreePreOrderInOrder(preOrder, 0, preOrder.length - 1, inOrder, 0, preOrder.length - 1); System.out.print("先序遍歷:"); build.preOrder(root); System.out.print("\n中序遍歷:"); build.inOrder(root); System.out.print("\n原二叉樹:\n"); build.prototypeTree(root); } /** * 分治法 * 通過先序遍歷結(jié)果和中序遍歷結(jié)果還原二叉樹 * @param preOrder 先序遍歷結(jié)果序列 * @param preOrderBegin 先序遍歷起始位置下標(biāo) * @param preOrderEnd 先序遍歷末尾位置下標(biāo) * @param inOrder 中序遍歷結(jié)果序列 * @param inOrderBegin 中序遍歷起始位置下標(biāo) * @param inOrderEnd 中序遍歷末尾位置下標(biāo) * @return */ public Node buildTreePreOrderInOrder(int[] preOrder, int preOrderBegin, int preOrderEnd, int[] inOrder, int inOrderBegin, int inOrderEnd) { if (preOrderBegin > preOrderEnd || inOrderBegin > inOrderEnd) { return null; } int rootData = preOrder[preOrderBegin];//先序遍歷的第一個字符為當(dāng)前序列根節(jié)點 Node head = new Node(rootData); int divider = findIndexInArray(inOrder, rootData, inOrderBegin, inOrderEnd);//找打中序遍歷結(jié)果集中根節(jié)點的位置 int offSet = divider - inOrderBegin - 1;//計算左子樹共有幾個節(jié)點,節(jié)點數(shù)減一,為數(shù)組偏移量 Node left = buildTreePreOrderInOrder(preOrder, preOrderBegin + 1, preOrderBegin + 1 + offSet, inOrder, inOrderBegin,inOrderBegin + offSet); Node right = buildTreePreOrderInOrder(preOrder, preOrderBegin + offSet + 2, preOrderEnd, inOrder, divider + 1, inOrderEnd); head.left = left; head.right = right; return head; } /** * 通過先序遍歷找到的rootData根節(jié)點,在中序遍歷結(jié)果中區(qū)分出:中左子樹和右子樹 * @param inOrder 中序遍歷的結(jié)果數(shù)組 * @param rootData 根節(jié)點位置 * @param begin 中序遍歷結(jié)果數(shù)組起始位置下標(biāo) * @param end 中序遍歷結(jié)果數(shù)組末尾位置下標(biāo) * @return return中序遍歷結(jié)果數(shù)組中根節(jié)點的位置 */ public int findIndexInArray(int[] inOrder, int rootData, int begin, int end) { for (int i = begin; i <= end; i++) { if (inOrder[i] == rootData) return i; } return -1; } /** * 二叉樹先序遍歷結(jié)果 * @param n */ public void preOrder(Node n) { if (n != null) { System.out.print(n.val + ","); preOrder(n.left); preOrder(n.right); } } /** * 二叉樹中序遍歷結(jié)果 * @param n */ public void inOrder(Node n) { if (n != null) { inOrder(n.left); System.out.print(n.val + ","); inOrder(n.right); } } /** * 還原后的二叉樹 * 二叉數(shù)層次遍歷 * 基本思想: * 1.因為推導(dǎo)出來的二叉樹是保存在Node類對象的子對象里面的,(類似于c語言的結(jié)構(gòu)體)如果通過遞歸實現(xiàn)層次遍歷的話,不容易實現(xiàn) * 2.這里采用List隊列逐層保存Node對象節(jié)點的方式實現(xiàn)對二叉樹的層次遍歷輸出 * 3.如果父節(jié)點的位置為i,那么子節(jié)點的位置為,2i 和 2i+1;依據(jù)這個規(guī)律逐層遍歷,通過保存的父節(jié)點,找到子節(jié)點。并保存,不斷向下遍歷保存。 * @param tree */ public void prototypeTree(Node tree){ //用list存儲層次遍歷的節(jié)點 if(tree !=null){ if(tree!=null) nodeList.add(tree); nodeList.add(tree.left); nodeList.add(tree.right); int count=3; //從第三層開始 for(int i=3;count<treeNode;i++){ //第i層第一個子節(jié)點的父節(jié)點的位置下標(biāo) int index = (int) Math.pow(2, i-1-1)-1; /** * 二叉樹的每一層節(jié)點數(shù)遍歷 * 因為第i層的最大節(jié)點數(shù)為2的i-1次方個, */ for(int j=1;j<=Math.pow(2, i-1);){ //計算有效的節(jié)點的個數(shù),和遍歷序列的總數(shù)做比較,作為判斷循環(huán)結(jié)束的標(biāo)志 if(nodeList.get(index).left!=null) count++; if(nodeList.get(index).right!=null) count++; nodeList.add(nodeList.get(index).left); nodeList.add(nodeList.get(index).right); index++; if(count>=treeNode)//當(dāng)所有有效節(jié)點都遍歷到了就結(jié)束遍歷 break; j+=2;//每次存儲兩個子節(jié)點,所以每次加2 } } int flag=0,floor=1; for(Node node:nodeList){ if(node!=null) System.out.print(node.val+" "); else System.out.print("# ");//#號表示空節(jié)點 flag++; /** * 逐層遍歷輸出二叉樹 * */ if(flag>=Math.pow(2, floor-1)){ flag=0; floor++; System.out.println(); } } } } /** * 內(nèi)部類 * 1.每個Node類對象為一個節(jié)點, * 2.每個節(jié)點包含根節(jié)點,左子節(jié)點和右子節(jié)點 */ class Node { Node left; Node right; int val; public Node(int val) { this.val = val; } } }
運行結(jié)果:
最后逐層輸出二叉樹的基本思想:
* 1.因為推導(dǎo)出來的二叉樹是保存在Node類對象的子對象里面的,(類似于c語言的結(jié)構(gòu)體)如果通過遞歸實現(xiàn)層次遍歷的話,不容易實現(xiàn)
* 2.這里采用List隊列逐層保存Node對象節(jié)點的方式實現(xiàn)對二叉樹的層次遍歷輸出
* 3.如果父節(jié)點的位置為i,那么子節(jié)點的位置為,2i 和 2i+1;依據(jù)這個規(guī)律逐層遍歷,通過保存的父節(jié)點,找到子節(jié)點。并保存,不斷向下遍歷保存。
以上這篇通過先序遍歷和中序遍歷后的序列還原二叉樹(實現(xiàn)方法)就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。
相關(guān)文章
用while判斷輸入的數(shù)字是否回文數(shù)的簡單實現(xiàn)
這篇文章主要介紹了用while判斷輸入的數(shù)字是否回文數(shù)的簡單實現(xiàn),需要的朋友可以參考下2014-02-02C++?TCP網(wǎng)絡(luò)編程詳細(xì)講解
TCP/IP是一種面向連接的、可靠的、基于字節(jié)流的傳輸層通信協(xié)議,它會保證數(shù)據(jù)不丟包、不亂序。TCP全名是Transmission?Control?Protocol,它是位于網(wǎng)絡(luò)OSI模型中的第四層2022-09-09C++將音頻PCM數(shù)據(jù)封裝成wav文件的方法
這篇文章主要為大家詳細(xì)介紹了C++將音頻PCM數(shù)據(jù)封裝成wav文件的方法,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下2022-01-01C++新特性詳細(xì)分析基于范圍的for循環(huán)
C++11這次的更新帶來了令很多C++程序員期待已久的for?range循環(huán),每次看到j(luò)avascript,?lua里的for?range,心想要是C++能有多好,心里別提多酸了。這次C++11不負(fù)眾望,再也不用羨慕別家人的for?range了。下面看下C++11的for循環(huán)的新用法2022-04-04