Java計算一個數(shù)加上100是完全平方數(shù),加上168還是完全平方數(shù)
題目:一個整數(shù),它加上100后是一個完全平方數(shù),加上168又是一個完全平方數(shù),請問該數(shù)是多少?
程序分析:在10萬以內(nèi)判斷,先將該數(shù)加上100后再開方,再將該數(shù)加上268后再開方,如果開方后的結果滿足如下條件,即是結果。請看具體分析:
程序設計:
public class test { public static void main (String[]args){ long k=0; for(k=1;k<=100000l;k++) if(Math.floor(Math.sqrt(k+100))==Math.sqrt(k+100) && Math.floor(Math.sqrt(k+168))==Math.sqrt(k+168)) System.out.println(k); } }
性質1:完全平方數(shù)的末位數(shù)只能是0,1,4,5,6,9。
性質2:奇數(shù)的平方的個位數(shù)字為奇數(shù),十位數(shù)字為偶數(shù)。
證明 奇數(shù)必為下列五種形式之一:
10a+1, 10a+3, 10a+5, 10a+7, 10a+9
分別平方后,得
(10a+1)^2=100+20a+1=20a(5a+1)+1
(10a+3)^2=100+60a+9=20a(5a+3)+9
(10a+5)^2=100+100a+25=20 (5a+5a+1)+5
(10a+7)^2=100+140a+49=20 (5a+7a+2)+9
(10a+9)^2=100+180a+81=20 (5a+9a+4)+1
綜上各種情形可知:奇數(shù)的平方,個位數(shù)字為奇數(shù)1,5,9;十位數(shù)字為偶數(shù)。
性質3:如果完全平方數(shù)的十位數(shù)字是奇數(shù),則它的個位數(shù)字一定是6;反之,如果完全平方數(shù)的個位數(shù)字是6,則它的十位數(shù)字一定是奇數(shù)。
證明 已知=10k+6,證明k為奇數(shù)。因為的個位數(shù)為6,所以m的個位數(shù)為4或6,于是可設m=10n+4或10n+6。則
10k+6=(10n+4)=100+(8n+1)x10+6
或 10k+6=(10n+6)=100+(12n+3)x10+6
即 k=10+8n+1=2(5+4n)+1
或 k=10+12n+3=2(5+6n)+3
∴ k為奇數(shù)。
推論1:如果一個數(shù)的十位數(shù)字是奇數(shù),而個位數(shù)字不是6,那么這個數(shù)一定不是完全平方數(shù)。
推論2:如果一個完全平方數(shù)的個位數(shù)字不是6,則它的十位數(shù)字是偶數(shù)。
性質4:偶數(shù)的平方是4的倍數(shù);奇數(shù)的平方是4的倍數(shù)加1。
這是因為 (2k+1)=4k(k+1)+1
(2k)=4
性質5:奇數(shù)的平方是8n+1型;偶數(shù)的平方為8n或8n+4型。
在性質4的證明中,由k(k+1)一定為偶數(shù)可得到(2k+1)是8n+1型的數(shù);由為奇數(shù)或偶數(shù)可得(2k)為8n型或8n+4型的數(shù)。
性質6:平方數(shù)的形式必為下列兩種之一:3k,3k+1。
因為自然數(shù)被3除按余數(shù)的不同可以分為三類:3m,3m+1, 3m+2。平方后,分別得
(3m)=9=3k
(3m+1)=9+6m+1=3k+1
(3m+2)=9+12m+4=3k+1
同理可以得到:
性質7:不能被5整除的數(shù)的平方為5k±1型,能被5整除的數(shù)的平方為5k型。
性質8:平方數(shù)的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。
除了上面關于個位數(shù),十位數(shù)和余數(shù)的性質之外,還可研究完全平方數(shù)各位數(shù)字之和。例如,256它的各位數(shù)字相加為2+5+6=13,13叫做256的各位數(shù)字和。如果再把13的各位數(shù)字相加:1+3=4,4也可以叫做256的各位數(shù)字的和。下面我們提到的一個數(shù)的各位數(shù)字之和是指把它的各位數(shù)字相加,如果得到的數(shù)字之和不是一位數(shù),就把所得的數(shù)字再相加,直到成為一位數(shù)為止。我們可以得到下面的命題:
一個數(shù)的數(shù)字和等于這個數(shù)被9除的余數(shù)。
下面以四位數(shù)為例來說明這個命題。
設四位數(shù)為,則
= 1000a+100b+10c+d
= 999a+99b+9c+(a+b+c+d)
= 9(111a+11b+c)+(a+b+c+d)
顯然,a+b+c+d是四位數(shù)被9除的余數(shù)。
對於n位數(shù),也可以仿此法予以證明。
關於完全平方數(shù)的數(shù)字和有下面的性質:
性質9:完全平方數(shù)的數(shù)字之和只能是0,1,4,7,9。
證明 因為一個整數(shù)被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4這幾種形式,而
(9k)=9(9)+0
(9k±1)=9(9±2k)+1
(9k±2)=9(9±4k)+4
(9k±3)=9(9±6k)+9
(9k±4)=9(9±8k+1)+7
除了以上幾條性質以外,還有下列重要性質:
性質10:為完全平方數(shù)的充要條件是b為完全平方數(shù)。
證明 充分性:設b為平方數(shù),則
==(ac)
必要性:若為完全平方數(shù),=,則
性質11:如果質數(shù)p能整除a,但p的平方不能整除a,則a不是完全平方數(shù)。
證明 由題設可知,a有質因數(shù)p,但無因數(shù),可知a分解成標準式時,p的次方為1,而完全平方數(shù)分解成標準式時,各質因數(shù)的次方均為偶數(shù),可見a不是完全平方數(shù)。
性質12:在兩個相鄰的整數(shù)的平方數(shù)之間的所有整數(shù)都不是完全平方數(shù),即若
n^2 < k^2 < (n+1)^2
則k一定不是完全平方數(shù)。
性質13:一個正整數(shù)n是完全平方數(shù)的充分必要條件是n有奇數(shù)個因數(shù)(包括1和n本身)。
相關文章
Spring Cloud Stream分區(qū)分組原理圖解
這篇文章主要介紹了Spring Cloud Stream的分區(qū)和分組,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友可以參考下2020-03-03java中Pulsar?InterruptedException?異常
這篇文章主要為大家介紹了java中Pulsar?InterruptedException?異常分析,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪2023-02-02Spring HttpMessageConverter的作用及替換解析
這篇文章主要介紹了Spring HttpMessageConverter的作用及替換解析,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2018-02-02